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What a Drag… 

 

Bill Pisciella 

 

 

INTRODUCTION 

 

This unit is designed to introduce the concept of abstract modeling to high school 

students. The mathematics involved could be taught from tenth grade to twelfth grade. 

The ideas are fairly simple. Together they combine into a long process. With the use of 

spreadsheet programs, the tasks can become possible for any student. 

 

The modeling will use probability and statistics to model the effects of the atmosphere on 

objects that move through it. This is commonly called air drag. I will not use pre-

developed formulas. The formulas will be developed from basic concepts. These 

concepts are the laws of motion and momentum. The laws will be simplified into 

common sense concepts.  

 

The models that we will create are of the atmosphere, rain falling in the atmosphere, a 

baseball falling from the sky, a baseball being hit by a bat, and a rocket being launched 

from the ground. 

 

RATIONALE 

 

The first question that arises is why teach abstract modeling? With all of the material and 

skills that must be taught in school, it seems to be way beyond the level of what should 

be taught. The common educational wisdom is first we will teach students the basics and 

then we will concern ourselves with enrichment. This unit is designed to make a frontal 

assault on common educational wisdom. I am declaring war on traditional education. 

 

So what is wrong with traditional education?  Let’s apply the conventional wisdom to 

something dear to the hearts of teenage students-driving a car. Imagine if we said that 

before anyone could learn to drive, they must first learn everything about an automobile. 

Most people would never get the opportunity to drive! Maybe that may sound good to 

some people. It sure doesn’t sound good to someone who wants to learn to drive. 

 

A modern educational answer is we’ll teach through a “hands-on” approach. This would 

be great for learning how to drive. It is not good in building a large bridge. We can’t keep 

trying to build bridges until we get it right. There must be a better approach.  

 

The approach used in this unit is to design abstract models from concepts students 

already have. The goal is to have the models be only as complex as necessary to develop 

basic understanding. While the models may not perfectly describe what’s happening, they 

will serve to get results that are close enough to reality. 
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MY STUDENTS 

 

I teach “gifted and talented” students who are seeking careers in professional area. The 

quotes around gifted and talented are there because I have no clue what anybody means 

by that term. I do know that my students are highly motivated and have developed a 

strategy to meet their aspirations. Ninety percent of this year’s graduating class has 

indicated a desire to study engineering or computer science in college.  

 

This unit, however, is designed at a level that does not presuppose an above average 

motivation or ability. The idea is to make modeling an interesting exercise. Therefor this 

unit will concentrate on the concepts and use spreadsheets to make calculations. This unit 

will assume that teachers can set up the spreadsheets. 

 

THE BEGINNING – ASSUME, ASSUME, ASSUME… 

 

The very first step in modeling is to make assumptions. The answers that are based on 

these assumptions are not exactly correct. These assumptions will cause concerns among 

many teachers and students. Engineers and scientists do assume all the time. The 

calculations that they make are never exact. By designing models using assumptions, we 

are entering the real world and leaving the unreal world of education. 

 

The major point in modeling is to state the assumptions clearly so that someone else can 

know the limitations of the model. These assumptions will be stated in terms of the 

simplifications that will be made to enhance understanding. Students need to know the 

assumptions so that they know that more complex but more accurate models can be 

made. 

 

Our first assumptions are about the nature of the molecules in the atmosphere. The 

atmosphere contains nitrogen (78%), oxygen (21%), argon (0.6%) and small amounts of 

carbon dioxide, water, ozone, volatile organic compounds, particulate matter, and other 

gases. We will simplify the atmosphere to be one type of molecule with a mass that is the 

weighted average of nitrogen and oxygen. This mass is 4.79x10
-26

 Kilograms. 

 

Molecules come in various shapes. They are also rotating in random directions. We will 

assume that the molecule for our models is a perfect sphere that has a radius of 1.4 

angstroms (1.4x10
-10

 meters). We will assume that they are not rotating. This assumption 

will simplify our calculations of collisions.  

 

No collision between any two objects is perfectly elastic. A perfectly elastic collision 

results in no loss of energy. We all know that when molecules collide with an object 

entering our atmosphere from space, the object gets very hot. The space shuttle reentry is 

a classic case. The tiles on the shuttle glow red hot upon reentry. Nevertheless, we will 

assume that all collisions with molecules are elastic collisions. This will allow us to use 

simple formulas to describe air drag. 
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Molecules at room temperature move in almost random directions with different speeds. 

The direction is almost at random because gravity makes the preferred direction to be 

towards the Earth. The speed of the molecules follows a distribution with an average of 

468 meters per second. A graph of the velocity of our air molecules at room temperature 

is shown below: 

 

 
 

 When the molecules collide with themselves we will assume that the one molecule is 

moving at 468 meters per second and the others are still. When the molecules collide with 

other objects, we will assume that they are not moving. 

 

We will also make some statistical assumptions. There is an average of 2.69x10
25

 

molecules in one cubic meter. This is such a large number that we can assume using 

averages will yield reasonable results for our models. Therefor we can assume, for 

example that the average velocity is zero, even though the average speed is 468 

meters/second. (This assumption can help reinforce student understanding of the 

difference between speed and velocity). Of course, this idea will only work with no wind, 

which is another of our assumptions. 

 

Clearly, we made a large number of assumptions that are not correct. However, we can 

do that if the behavior predicted is close to the actual behavior. We must return to the 
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original purpose of this unit. We are trying to get a conceptual understanding of behavior 

through modeling. We want to be able to use our model to predict behavior. We are not 

trying to do advanced scientific research. 

 

FOLLOW THE BOUNCING BALL… 

 

I have seen physics texts that state that the results of two and three-dimensional elastic 

collisions cannot be found. This would mean that if an elastic collision occurs, no one 

could predict what would happen. If the result of the collision were indeterminate, then 

the result would be a random event. This clearly is not real. What the author probably 

meant to say is that the results of such collisions are too difficult for students to find. 

 

I disagree with either argument. The results of two and three-dimensional elastic 

collisions can be found. They follow a basic premise. The objects exchange momentum 

in the direction of the perpendicular to the tangent plane at the point of contact. There is 

no momentum change parallel to the tangent plane. The diagram below illustrates the 

concept. 

Tangent Plane 

Momentum doesn't 

Change

Perpendicular 

Momentum is 

Exchanged
 

 

We will use m1 and m2 to represent the two masses, v1I and v2I their respective initial 

velocities before collision, and v1f and v2f to represent their velocities after collision. 

Then along the perpendicular, the final velocities will be given by the following 

equations: 

 

v1 f

m1 m2

m1 m2

v1i

2m2

m1 m2

v2i

v2 f

m1 m2

m1 m2

v2i

2m2

m1 m2

v1i
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If the two objects have the same mass, the equations become: 
v1 f v2i

v2 f v1i

 

 

If one mass is very much larger than the other mass (m1 >> m2), then the equations 

become 

 

v1 f

m1 m2

m1

v1i

v2 f 2v1i

 

 

We will use this last set of equations to create the models of the raindrop, the baseball 

drop, the baseball flight, and the rocket launch. We will slightly modify the equation for 

vif to find the change in velocity: 

 
v v1f v1i

v
m1 m2

m1

v1i v1i

v
m1 m2

m1

v1i

m1

m1

v1i

v
m1v1i m2v1i m1v1i

m1

v
m2

m1

v1i

 

 

 

THE GIANT BILLIARDS GAME… 

 

In our first model, we will predict how far a molecule travels before colliding with 

another molecule.  We need some data first. We will assume that we are at standard 

temperature and pressure. At standard temperature and pressure, there are 6.023x10
24

 

molecules in 22.4 liters of gas. There are 1,000 liters in a cubic meter. We can divide 

6.023x10
23

by 22.4 and then multiply by 1,000 to find that there are 2.69x10
25 

molecules 

in a cubic meter. 

 

The average space between molecules is found by taking the reciprocal of the cube root 

of the number of molecules. This turns out to be 3.34x10
-9

 meters.  
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We also need to find the target area for a collision between two molecules. The area 

would be the area as shown below: 

 

Target Area 

Inside Circle

 
 

This area has a radius of 2R (R=1.4x10
-10

). Therefor, the target area is R
2
 or 9.85x10

-19
 

square meters. 

 

We will assume that one molecule is moving and all of the others are stationary. We will 

also assume that the other molecules are evenly distributed. Since the moving molecule is 

just as likely to move in any direction, we will use a sphere to represent its paths. This 

suggests a spherical distribution of the other molecules. We will do this by creating 

spherical shells of the other molecules.  

 

Each sphere will be 3.34x10
-9

 meters larger in radius than the sphere inside. This number 

represents the average distance between molecules. We can find the volume of each 

sphere and the number of molecules in it. By subtracting the molecules in the sphere just 

inside it, we can find the number of molecules in the shell between the spheres. By 

multiplying the number of molecules in each shell by the target area for one molecule, we 

can find the target area of the shell. The probability of the moving molecule hitting a 

molecule in the shell is the target area divided by the area of the shell (4 R
2
). 

 

Finally we really need to find the probability of not hitting each shell to find the 

probability of hitting at any level. We find the probability of hitting by subtracting the 

probability of not hitting from 1. The tables below show the results of calculations made 

using a spreadsheet. 
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Dist. 

X10
-9 

Volume 

X10
-25 

#Mole. #/Layer Area 

X10
-16 

Target 

area 

X10
-18 

Phit 

Layer 

Pmiss 

Layer 

Pmiss 

Total 

Phit 

Total 

3.34 1.56 4.19 4.19 1.40 4.13 0.029 0.971 0.971 0.030 

6.68 12.50 33.51 29.32 5.60 28.9 0.052 0.948 0.920 0.080 

10.00 42.10 113.1 79.59 12.60 78.4 0.062 0.938 0.863 0.137 

13.40 99.70 268.1 155.0 2.2.4 153 0.068 0.932 0.804 0.196 

16.70 195.0 523.6 255.5 35.0 251 0.072 0.928 0.747 0.254 

20.0 336.0 904.8 381.2 50.4 376 0.075 0.925 0.691 0.309 

23.40 534.0 1,437 532.0 68.6 524 0.076 0.924 0.638 0.362 

26.70 798.0 2,145 707.9 896 697 0.078 0.922 0.588 0.412 

30.00 1140 3,054 909.0 1130 895 0.079 0.921 0.542 0.458 

33.40 1560 4,189 1,136 1400 1118 0.080 0.920 0.499 0.501 

 

 

Title What it means 

Distance The distance from the center of the sphere (radius) 

Volume Volume of the sphere (Volume=4 R
3
/3)

#Mole The number of molecules in the sphere. It was found by multiplying the 

volume by the number of molecules per cubic meter. 

#/Layer The number of molecules between the spheres. It was found by 

subtracting away the number of molecules in the previous sphere. 

Area The area of each sphere (Area =4 R
2
) 

Target 

Area 

The target area of the molecules. This was found by multiplying the 

number of molecules  in a layer by the target area per molecule 

(9.85x10
-19

) 

Phit Layer This is the probability of a hit in a layer. It was found by dividing the 

target area by the area. 

Pmiss 

Layer 

This is the probability of a miss in each layer. It was found by using 1- 

Phit. This value was used to find the cumulative probability of a miss. 

Pmiss 

Total 

This is a cumulative probability of a miss. It was found by multiplying 

the previous total Pmiss by the new layer Pmiss.   

Phit Total This is just 1-Pmiss Total. This method is the only way to determine the 

probability of one event for a series of probabilities. This way prevents 

probabilities from being counted twice. 

 

The data table shows that there is approximately a 50% chance of a collision when the 

molecule travels 33.4x10
-9 

meters. Since the average molecule travels at 468 m/s, the 

molecule will travel for approximately 7.1x10
-11

seconds. If we take the reciprocal of the 

time we find that the molecule makes approximately 1.4x10
10 

collisions per second. 
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What direction will the molecule take after collision? It is impossible to tell unless we 

know precisely the location of each molecule and the exact paths. Slight variations will 

make great difference in what will happen next. The large number of collision leads to 

chaotic results. The large number of collisions also leads to a stable result at the end. This 

is a simple case of Chaos Theory.  

 

LIKE A TRUCK HITTING A PING PONG BALL… 

 

The mass of an air molecule is almost infinitesimal when compared to a raindrop, a 

baseball or a rocket. Therefore, the equation for the change in velocity becomes: 

 

v
m2

m1

v1i  

 

Remember that the change in velocity is along the perpendicular to the tangent between 

the object and molecule. On a curved surface this change varies. We can find an average 

of the changes along the surface of the object. We will call these a Drag Profile. A 

drawing if what this looks like is shown below: 

 

 

 
 

 

The Drag Profile, DP, is the average of the cosine of the slope angle. As the slope angle 

increases from 0
0
 to 90

0
, the change in velocity will decrease from 100% of the maximum 

to 0%. The average of the slopes can be found for objects with axial symmetry (circles 

when looked at from the top) by finding the two-dimensional average over half of the 

shape and using that as the average. The averages were found using a spreadsheet. The 

shapes used all have a 1:1 aspect ration (They are as wide as they are high.) The table 

below shows some Drag Profiles: 
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Object Drag Profile 

 

 
Cube 

 

 

1.0000 

 

 
Sphere 

 

 

0.7823 

 

 
Cone 

 

 

0.7071 

 

 
Paraboloid 

 

 

0.7218 

 

 

We are going to use a Time Step, T, in our calculations. The Volume of the molecules is 

the product of the Area of the Object, AO the Velocity of the Object, V, and the Time 

Step, T. The mass of the molecules is the product of the Volume, the number of 

molecules per cubic meter, N, and the mass per molecule, mm. Finally, we find multiply 

by the Drag Profile, DP. We find the change in velocity as: 

 

VD DP

AONmmV T

mO

V

VD DP

AONmm T

mO

V
2

 

 

The mass of the object is mO. The equation looks complicated. Almost all of the numbers, 

however, are a constant. For each of our models, we will calculate all of the constants and 

simplify the equation. We are now ready to design our models. 
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RAINDROPS KEEP FALLING ON MY HEAD… 

 

Our first model will be the raindrop model. Raindrops accelerate as they fall due to 

gravity. The gravitational effect is counteracted by the air drag. When the air drag effect 

balances the gravitational effect, the raindrop reaches terminal velocity. In our model we 

are not considering evaporation of the drop. 

 

Our first step is to simplify the V equation. Since we are assuming that the molecule is 

spherical, we can simplify the AO divided by mO. The mass of the raindrop is its density 

times its volume. The density of water is 1000 kilograms per cubic meter. We also know 

that the Drag Profile is 0.7823 Using the volume of the sphere and the area of the sphere, 

we get the following derivation: 

 

VD DP

AONmm T

mO

V 2

VD DP

AONmm T

VO

V
2

VD 0.7823
R2Nmm T

1000
4

3
R

3

V
2

VD

0.5867Nmm T

1000R
V 2

 

 

We also know that there are 2.69x10
25

 molecules in a cubic meter (N) and the mass of a 

molecule is 4.79x10
-26

 kilograms. Therefor, the equation can be simplified to: 

 

 

VD

0.5867 2.69x10
25

4.79x10
26

T

1000R
V

2

VD

0.7568 T

1000R
V 2

 

 

Terminal velocity is reached when the change in velocity due to gravity is counteracted 

by the change in velocity due to air drag. The equation for terminal velocity is derived 

below: 
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VD Vg

0.7568 T

1000R
VT

2
g T

VT

2 1000Rg T

0.7568 T

VT

2 1000R(9.81) T

0.7568 T

VT

2 12,962.4R

VT 113.9 R

 

 

Therefor, the larger the raindrop, the larger the terminal velocity. Let’s assume that a 

raindrop starts at 1000 meters. From physics we can find the velocity if there were no air 

drag: 

 

V 2gh

V 19.62(1000)

V 140m / s

 

 

Converting 140 m/s to miles per hour, the raindrop would hit the ground at 313 miles per 

hour. Ouch! The table below indicates the terminal velocity of a raindrop for different 

radii (A 10 mm radius is a large marble size). The two measured values were provided by 

Carl Morgan, Forecaster, Meteorology, National Weather Service 

(www.madsci.org/posts/archives/jul2000/96226446.ph.r.html) 

 

Radius of Raindrop V (m/s) V(mph) V (measured) m/s 

1 mm (.001 m) 3.60 8.38 6.49 

2 mm (.002 m) 5.09 11.84 8.83 

5 mm (.005) 8.05 18.73  

10 mm (.01 m) 11.39 26.50  

20 mm (.02 m) 16.10 37.46  

50 mm (.05 m) 25.47 59.27  

100 mm (.1 m) 36.02 83.82  

36.7 mm (.0367 m) 

Baseball Size 

21.79 50.71  

 

How far will the raindrop fall before it reaches terminal velocity? The answer is forever! 

A better question is how far will the raindrop fall before it reaches 99% of terminal 

velocity? This problem can be solved using an iterative loop. As an example, we will 

start at a height of 50 meters and let a 2mm raindrop fall. We will find how far it travels 
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before reaching 99% of 5.09 m/s. The velocity we are looking for is 5.04 m/s. We will us 

a time step of 0.1 seconds. Using the radius of .002 in the equation for the change in 

velocity would be: 

 

VD=.0378V
2 

 

The iterative loop is: 

 

Initial Conditions 

Height: H  = 1000 m 

Distance Traveled =D= 0 m 

Initial Velocity: V = 0 m/s 

Time Step: T = .1 s 

g= 9.81m/s
2
 

Vg =.98 

Loop until velocity is 5.01 

VOLD = V 

HOLD = H 

VD =.0378V
2 

V = VOLD + VD - Vg 

H = HOLD + .5(V + VOLD) T 

D = HOLD- H 

 

Time H V Vg Vd D 

0 1000.000 0.000 0.981 0.000 0.000 

0.1 999.510 0.981 0.981 0.036 0.490 

0.2 998.056 1.926 0.981 0.140 1.944 

0.3 995.710 2.766 0.981 0.289 4.290 

0.4 992.598 3.458 0.981 0.452 7.402 

0.5 988.875 3.987 0.981 0.601 11.125 

0.6 984.698 4.367 0.981 0.721 15.302 

0.7 980.201 4.627 0.981 0.809 19.799 

0.8 975.488 4.799 0.981 0.871 24.512 

0.9 970.634 4.909 0.981 0.911 29.366 

1 965.689 4.979 0.981 0.937 34.311 

1.1 960.688 5.023 0.981 0.954 39.312 

1.2 955.651 5.050 0.981 0.964 44.349 

The raindrop falls for about 42.5 meters before reaching 99% of terminal velocity. 
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IT’S A HIGH FLY BALL… 

 

Imagine if a baseball dropped from 1000 meters. With no air drag it would hit the ground 

at 313 mph. In fact any object would hit the ground at 313 mph. What differences should 

there be between raindrops and a baseball? How about any sphere? We could slightly 

revise the VD and the terminal velocity equation so that it will work for any sphere. To 

do that we only need the mass density, , of the sphere.  The equations are: 

 

VD

0.5867 2.69x10
25

4.79x10
26

T

R
V 2

VD

0.7568 T

R
V 2

VD Vg

0.7568 T

R
VT

2 g T

VT

2 9.81 R

.7568

VT 12.96 R

VT 3.6 R

 

 

A baseball has a radius of .023 meters. Therefor its volume is 5.097x10
-5 

cubic meters. It 

has a mass of 0.145 kilograms. Its density is 2,844 kilograms per cubic meter. We can use 

the equation for terminal velocity of a sphere to find that the terminal velocity is 29.1 

m/s. 

 

IT’S A LONG DRIVE… 

 

Hitting a baseball at an angle poses a new problem. Air drag occurs along the path of the 

ball. The equations, however, are in two directions. This means that we have to convert 

back and forth between the path of the ball and its velocity in two dimensions. The 

equation that we will use is: 
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VD

0.7568 T

R
V 2

VD

0.7568 T

2844(.023)
V2

VD .01157V
2

T

 

 

The dramatic effect of the air drag on a baseball can be seen by the graph below. The ball 

was assumed to be hit at 50 m/s or 111.8 miles per hour. The angle is 40
O
. It was hit at a 

height of 1 meter (3.28 feet). With air drag it traveled 88 meters (288 Feet). Without air 

drag it would have traveled 249 meters (817 feet).  

 

 
The graph was expanded to show only the complete flight of the air drag case. The no air 

drag case is symmetric so that the total travel can by doubling the distance to its highest 

point. Note that the air drag path is not symmetric. Its maximum point occurred at 54 

meters. On the way down it only traveled 34 meters. With air drag, the path is not a 

parabola. 

 

Below is the case for the air drag model. The no air drag was computed with the simple 

equations from physics: 
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x xo vcos t

y yo vsin t
1

2
gt2

 

 

T X Y Vx Vy V ∆Vd 

0 0.00 1.00 38.30 32.14 50.00 40.00 5.79 

0.2 7.22 6.40 33.87 26.46 42.98 38.00 4.27 

0.4 13.65 10.85 30.50 21.87 37.53 35.63 3.26 

0.6 19.49 14.50 27.85 18.00 33.17 32.88 2.55 

0.8 24.85 17.47 25.72 14.66 29.60 29.69 2.03 

1 29.81 19.84 23.95 11.69 26.66 26.02 1.64 

1.2 34.46 21.66 22.48 9.01 24.22 21.85 1.36 

1.4 38.83 22.99 21.22 6.54 22.20 17.14 1.14 

1.6 42.96 23.85 20.13 4.25 20.57 11.91 0.98 

1.8 46.89 24.28 19.17 2.08 19.28 6.20 0.86 

2 50.64 24.29 18.31 0.03 18.31 0.08 0.78 

2.2 54.22 23.91 17.54 -1.94 17.64 -6.30 0.72 

2.4 57.66 23.15 16.82 -3.82 17.25 -12.79 0.69 

2.6 60.96 22.04 16.15 -5.63 17.10 -19.21 0.68 

2.8 64.12 20.57 15.51 -7.37 17.17 -25.41 0.68 

3 67.16 18.77 14.89 -9.04 17.42 -31.25 0.70 

3.2 70.08 16.65 14.29 -10.63 17.82 -36.65 0.73 

3.4 72.88 14.23 13.70 -12.16 18.32 -41.58 0.78 

3.6 75.57 11.51 13.12 -13.60 18.90 -46.03 0.83 

3.8 78.13 8.53 12.55 -14.97 19.54 -50.03 0.88 

4 80.59 5.28 11.98 -16.26 20.20 -53.61 0.94 

4.2 82.93 1.80 11.42 -17.46 20.86 -56.81 1.01 

4.4 85.16 -1.91 10.87 -18.58 21.53 -59.67 1.07 

 

The results in the table above are slightly different than the results of the graph. That is 

because a time step of .2 seconds was used in the table to shorten it. The graph was made 

with a time step of .1 seconds. The smaller the time step, the more accurate the results. 

The compromise is between accuracy and time of calculations. With the advent of high-

speed personal computers, the accuracy can be greatly enhanced. 

 

Below is the set of iterative equations used: 

Initial Conditions 

X = XO  Initial Distance from some Given Point (usually 0) 

Y =YO  Initial Height 

V =VO  Initial Speed 

O  Initial Angle above the Horizon 

T   Time Step (Between Calculations) 
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Loop 

VD .01157V 2 T

VNEW VOLD VD

VXNEW VNEW cos

VYNEW (VYNEW g T )sin

XNEW XOLD

VXOLD VXNEW

2
T

YNEW YOLD

VYOLD VYNEW

2
T

Tan
1 VYNEW

VXNEW

VOLD VNEW

VXOLD VXNEW

XOLD XNEW

YOLD YNEW

 

 Repeat Loop until X< 0 (Ball Hit Ground) 

 

 

10,9,8,7,6,5,4,3,2,1, LIFT OFF… 

 

The model for a rocket introduces four new concepts. The first of these is that the flight is 

powered. Also, both gravity and the mass of the atmosphere both vary with altitude. The 

final concept is that the shape of the object is not spherical. These new concepts along 

with the corresponding equations are explained below. 

 

Rocket power is based on the Conservation of Momentum. The momentums created by 

gases that leave the back of the rocket cause a corresponding change in momentum of the 

rocket. In the equation below, mF represents the amount of fuel leaving a rocket in the 

time period T; VF represents the speed that the gases leave the rocket; mT represents the 

total mass of the rocket and the fuel that has not yet been burned; and VR represents the 

increase in speed of the rocket. The equation for the increase in speed becomes: 

 
mT VR mFVF

VR

mFVF

mT
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Both the amount of fuel burned per time period and the velocity of the fuel are constant. 

The total mass of the rocket, however, is decreasing as the fuels burns. Therefor, the 

change in velocity is constantly increasing during the flight. 

 

The mass of the molecules per cubic meter also varies. As the altitude of the rocket 

increases, the density decreases. This will cause a decrease in the air drag as the rocket 

gains altitude. If we measure the altitude in terms of z meters, we can use an 

approximation to represent the number of molecules. The approximation that we will use 

is the Isothermic Model. It assumes that the temperature remains constant as the altitude 

increases. This is not true. Our model, however, is a simplification of reality. Our 

simplification will make the problem more understandable. The equation that we will use 

assumes that the atmosphere is a constant 15
O
 Celsius. The equation becomes: 

 

N NOe

Z

8420  

 

NO is the number of molecules per cubic meter at ground level. This number (2.69x10
25

) 

when multiplied by the mass of an average molecule (4.79x10
-26

 kg) gives the mass of a 

cubic meter of molecules at ground level (1.29 kilograms). Thus the mass of a cubic 

meter of molecules will decrease from 1.29 kilograms as the altitude increases. The chart 

below shows how dramatic a decrease this can be: 

    

Altitude (meters) Altitude (feet) Mass per Cubic Meter 

Kilograms 

0 0 1.29 

5,000 16,400 0.712 

10,000 32,800 0.394 

20,000 65,600 0.120 

50,000 164,000 0.003 

100,000 328,000 0.000009 

200,000 656,000 0.00000000006 

500,000 

(Shuttle Orbit) 

1,640,000 2.1x10
-26 

 

Note that even in orbit there is a slight mass of atmosphere that creates some air drag. 

We need to use a new equation for the air drag. This equation looks complicated but it is 

easy to plug into a spreadsheet for calculations. Thee new air drag equation becomes: 

 

VD DP

AONmm T

mT

V 2

VD DP

AO1.29e

Z

8420 T

mT

V2
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Gravity is not a constant it varies with the distance from the center of the Earth. The 

radius of the Earth is 6.375x10
6 

meters. Therefore the distance form the center of the 

Earth is R = (is 6.375x10
6
 +Z). The equation involves a Universal Gravitational Constant 

(6.67 x 10
11

) and the mass of the Earth (5.98 x 10
24

). Using these numbers for the Earth, 

equation for g becomes: 

 

g
GM

R2

g
6.67x10 11 5.98x1024

6.375x10
6

Z
2

g
3.99x10

14

6.375x106 Z
2

 

 

The table below shows how g varies with altitude: 

 

Altitude (meters) Altitude (feet) g (m/s
2
) 

0 0 9.81 

5,000 16,400 9.80 

10,000 32,800 9.79 

20,000 65,600 9.76 

50,000 164,000 9.67 

100,000 328,000 9.52 

200,000 656,000 9.23 

500,000 

(Shuttle Orbit) 

1,640,000 8.44
 

 

Note that g exists at close to 9.81 even in shuttle orbit. There is a common misconception 

that there is zero gravity in orbit. An object would not be in orbit without gravity. 

 

There are now three changes in velocity, VR, VD, and Vg. The total change in 

velocity is VR  - VD - Vg. The iterative equation becomes long. Rather than list them, 

I would rather list some interesting results. 

 

We will begin our example with a rocket that weighs 10,000 kilograms; has 90,000 

kilograms of fuel to start and has the exhaust velocity of the fuel be 3,000 m/s. We will 

make the rocket have a parabolic nose cone and be 5 meters in radius.  

 

The table below illustrates results for without gravity, with gravity and no air drag, and 

with gravity and air drag. We will also vary the rate at which the fuel burns in terms of 

how long it takes to burn all of the fuel. 
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Exhaust Velocity = 3,000 m/s 

 

Time of Burn No Gravity  

No Air Drag 

Gravity 

No Air Drag 

Gravity 

Air Drag 

200 VF =34,728 m/s 

ZF = 2,230,372 m 

VF = 32,790 m/s 

ZF = 2,047,594 m 

VF = 29,049 m/s 

ZF = 1,049,044 m 

400 VF = 17,239 m/s 

ZF = 2,230,372 m  

VF = 13, 698 m/s 

ZF = 1,480,208 m 

VF = 12,158 m/s 

ZF = 1,043,881 m 

600 VF = 11,493 m/s 

ZF = 2,230,372 m 

CAN’T 

LIFT OFF 

CAN’T 

LIFT OFF 

524 

Maximum Time 

VF =13,160 m/s 

ZF = 2,230,372 m 

VF = 8,728 

ZF = 908, 045 

VF = 7,051 

ZF = 576,099 

 

Exhaust Velocity = 2,000 m/s 

 

Time of Burn No Gravity  

No Air Drag 

Gravity 

No Air Drag 

Gravity 

Air Drag 

200 VF = 22,985 m/s 

ZF = 1,486, 914 m 

VF = 21,209 m/s 

ZF = 1,299,495 m 

VF = 18,363 m/s 

ZF = 866,681 m 

400 VF = 11,493 m/s 

ZF = 1,486,914 m 

VF = 7,745 m/s 

ZF = 716,029 

VF = 6,404 m/s 

ZF = 424,195 m 

428 

Maximum Time 

VF = 10,741 m/s 

ZF = 1,486,914 

VF = 6,686 m/s 

ZF = 599,278 m 

VF = 5,267 m/s 

ZF = 318,549 m 

 

Exhaust Velocity = 1,000 m/s 

 

Time of Burn No Gravity  

No Air Drag 

Gravity 

No Air Drag 

Gravity 

Air Drag 

200 VF = 11,493 m/s 

ZF = 743,457 m 

VF = 9,612 m/s 

ZF = 550,887 m 

VF = 7,342 m/s 

ZF = 275,345 

302 

Maximum Time 

VF = 7,611 m/s 

ZF = 743,457 m 

VF = 4,701 m/s 

ZF = 298,794 m 

VF = 2,531 m/s 

ZF = 93,056 m 

 

Exhaust Velocity = 500 m/s 

 

Time of Burn No Gravity  

No Air Drag 

Gravity 

No Air Drag 

Gravity 

Air Drag 

200 VF = 5,746 m/s 

ZF = 371,299 m 

VF = 3,807 m/s 

ZF = 176,357 m 

VF = 861 m/s 

ZF = 37,298 m  

211 

Maximum time 

VF = 5,447 m/s 

ZF = 371,299 m 

VF = 3,396 m/s 

ZF = 154,206 m 

VF = 582 m/s 

ZF = 29,876 m 
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The maximum time in the tables above indicates that for that exhaust velocity, any slower 

burn will not allow the rocket to lift off with gravity and air drag. This time of burn 

decreased with decreasing exhaust velocity.  

 

The effect of air drag increased dramatically as the exhaust velocity decreased. At burn 

times of 200 seconds, the percentage decrease in speed with air drag vs. no air drag went 

from 11.4% at an exhaust velocity of 3,000 m/s to 77.3% at an exhaust velocity of 500 

m/s. 

 

The distance traveled remained constant for the no gravity and no drag case at each 

exhaust velocity. This means that when gravity and air drag are not factors, the rocket 

travels the same distance during burn. The final velocity, however, decreases with 

increasing burn time. 

 

From the results of these tables, it can be seen that the exhaust velocity and the time of 

burn can have a major effect on both the velocity and the final height that a rocket 

reaches. The major limitation in the real world is the structural stress put on a rocket by 

high acceleration forces (g forces). 

 

LESSON PLANS 

 

The lesson plans are listed as exercises by topic. They are suggested exercises that 

depend on the amount of equipment available. 

 

Atmospheric Modeling 

 

Several neat experiments can be performed with an air table. Start with a large number of 

pennies. Place them in a matrix with small spaces between them. Make all of the pennies 

be heads up. Slide a penny that is tails up into them. See what happens to the original 

penny and the matrix of pennies. Try the experiment several times, starting with the same 

matrix configuration. The results should vary considerably. This is the basis of Chaos 

Theory. 

  

Now try the same experiment with a fifty-cent piece being the object originally in 

motion. The fifty-cent piece could represent a raindrop going through the air. Again try 

the experiment several times. What happens to the fifty-cent piece? What happens to the 

pennies? 

 

Repeat this last experiment with a large puck. How are the results different? 

 

Terminal Velocity 

 

Get several ping pong balls Inject each ball with a varying amount of liquid. Number 

each ball and record its mass. Try dropping them from as a high a point as possible. 
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Record the various times of flights. Graph the mass vs. time of flight. Also graph the 

average velocity vs. mass. Use the equation below to determine what the time of flight 

would be without air friction: 

 

t 2gh  

 

The average velocity is: 

 

VAVERAGE

h

t
 

 

 

Flight Path 

 

The flight path of a particle that is affected by air drag can be demonstrated using a water 

hose and a large wooden protractor (Every geometry teacher should have one.) The water 

hose should be adjusted to emit a thin stream of water. The water hose is set at various 

angles on the ground. The protractor measures the angles.  The distance that the water 

travels, the maximum height that it travels, and the distance it travels to maximum height 

is measured. Graph the results at angles from 10 to 80 degrees. The shapes of the paths 

can demonstrate the effects of air drag. 

 

Rocket Flight 

 

This experiment should be performed by the use of model rockets. The rockets should be 

fired with various cones of different shapes and sizes. The height of flight can be 

measured with simple devices available at stores who sell rockets. The height and time to 

the highest altitude should be measured. This will give a qualitative look at air drag on 

rockets. 
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ANNOTATED BIBLIOGRAPHY 

 

The units were created using basic concepts to create simplified models. Therefore, no 

works were cited. The following sources were used to understand basic concepts; they 

also provide the capability of enriching parts of the unit. The sources have been divided 

into topics to simplify their use: 

 

Modeling 

Ford, Andrew. Modeling the Environment: An Introduction to Systems Dynamics 

Modeling of Environmental Systems. Washington, D.C.: Island Press, 1999 

This book studies modeling at a systems level. It is an excellent source to 

understand the broader principles of modeling. It is written at a level that 

could be followed by students. It is general enough to cover almost any 

aspect of modeling. 

 

Richmond, Peterson, et al. An Introduction to Systems Thinking Hanover, New 

Hampshire: High Performance Systems, Inc., 1997 

This manual comes with Stella™ Software. The software has the 

capability of modeling complex systems by a graphical approach. It allows 

students to understand the concept of differential equations without 

needing the ability to solve them. This manual provides the rationale for 

placing problem solving at the forefront of education. 

 

Molecular Motion 

“Atomic Size”, 

http://mychemistrypage.future.easyspace.com/Inorganic/periodicity/size.htm 

This web-site and its links provide the size of molecules and their mass. 

The site could be used for a more complex but accurate model of the 

atmosphere. 

 

“Kinetic Theory of Gases: A Brief Review” http//www.phys.virginia.edu/classes 

/252/kinetic_theory.html 

This is an excellent source of the equation of motion of gases. The web-

site article derives the probability distribution of velocities of molecules. 

 

Nambu, John, Translator. Transnational College of NEX What is Quantum 

Mechanics? A Physics Overview. Boston, Ma.: Language Research Foundation, 

1997 

This is a quite interesting book. Students at the Transnational College of 

Japan originally published it in Japanese. The students treat science as a 

language. The book looks at a very complex concept and makes it into a 

cartoon story. The beginning gives a very good insight in quantum 

mechanics. The mechanisms that cause changes in the atmosphere can 

only be understood from a quantum mechanics perspective. 
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Wolf, Fred Alan, Taking the Quantum Leap, New York: Harper & Row, 1989 

The subtitle for this book is “The New Physics for Non-Scientists”. It is an 

apt title. The book turns quantum mechanics into a history lesson. This 

would be my first choice for students (or teachers) to start into the subject. 

 

Gleick, James, Chaos: Making a New Science, Toronto, Canada: Penguin Books, 

1987. 

As I was carrying this book with me to read, I ran across a number of 

people in all fields who have read it. It is similar to Wolf’s book above in 

that it traces the history of Chaos Theory to cover the key concepts. This is 

an excellent starting book on Chaos Theory. This topic is another essential 

element in understanding the atmosphere. 

 

Williams, Jack, The Weather Book. New York: Vintage Books, 1997 

This book has the look and feel of USA Today, which created the 

illustrations. It offers a very easy to understand explanation of the 

atmosphere from a meteorologist’s viewpoint. 

 

Terminal Velocity 

“Raindrops” http://www.shortsmeyer.com/wxfaqs/float/rdtable.html 

This web-site and links give terminal velocities for various size raindrops 

and hailstones. There is also an explanation of why the size of raindrops is 

limited. There is even an explanation of the shape of a water molecule and 

how it operates in clouds. 

 

Projectile Motion 

“The Drag Equation”. http://www.lerc.nasa.gov/WWW/k-12/airplane/drageq.html 

This web-site supplies a simple equation for air drag in airplanes. 

 

“Using Spreadsheets for Projectile Motion”.   

http://www.phys.virginia.edu/classes/581/ ProjectilesExcel.html 

This web-site provides a step b y step approach to creating a spreadsheet 

model for projectile motions with air drag. It is a good way to learn to use 

spreadsheets in modeling. 

 

Rocket Equations 

“Rocket Equations”. http://exepc.com/~culp/rockets/rckt_txt.htm/#Method 

This web-site and its links provide all of the information that you need to 

model the flight of small model rockets. Its links provide all types of other 

information. This is an excellent web-site. 

 

Lee, Wayne. To Rise from Earth. New York: Checkmark Books, 2000 
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This is an easy-to understand book that covers numerous topics on rockets 

and space flight. It should be the first book for students who want to do 

research in this area. 

 

Thomson, William Tyrell. Introduction to Space Dynamics. New York: Dover 

Publications, 1986 

This is a high level book for students who are serious about space physics. 

The student should be taking calculus before taking on this book. 

 

Bate, Mueller, and White. Fundamentals of Astrodynamics. New York: Dover 

Publications, 1971 

This book was written as a text for the United States Air Force Academy. 

It is a fairly high level text, but it has less calculus than the text above. 

 

 

 

 

 

 


