Engines of Our Ingenuity

No. 2316:
OPERATIONS RESEARCH

by Andrew Boyd

Today, the science of better. The University of Houston's College of Engineering presents this series about the machines that make our civilization run, and the people whose ingenuity created them.

When someone's called an "electrical engineer," we have some idea of what that person does. Same for "philosopher," "economist," "accountant," and most other titles. But what on earth is an "operations researcher?" Few people have even heard of operations research (or OR, as it's often called); yet it could well become the high-demand career of our new century.

The truly unfortunate name operations research traces to WW-II. Before the war, systematic mathematical analysis hadn't been applied to the military's operational problems -- questions like "How to schedule equipment maintenance?" and "Where to deploy airplanes?" As people addressed those problems they were said to be "researching military operations." And a name was born.

One application was hunting German U-boats. Allied planes would search out submarines that'd surfaced for air. Then they'd drop depth charges. Math was applied to determine angles of attack for airplanes, and the timing and spacing of those charges. The resulting likelihood of sinking a U-boat, once it was found, rose fourteen-fold -- from three percent to over forty.

After the war, operations researchers realized that the tools they'd developed applied to all sorts of problems: streamlining package delivery, improving manufacturing processes, designing financial asset portfolios. Professional societies formed. The field found its way into universities and businesses. Even the world of sports benefitted from OR. It answered questions like "What's the best schedule for a football league?" That's a tough problem when you think about the many constraints involved.

What differentiates operations research from other forms of engineering is a focus on systems, rather than components. An electrical engineer might be interested in a new security device for checking shipping containers at a port. An operations researcher asks where and how those devices should be deployed to improve overall safety.

Operations researchers have to know the mathematics of optimization and random processes. They have to be fluent in the use of statistics, simulation, and computer programming. What's amazing is that these tools can serve so many problems in so many fields. That's why we find OR scattered throughout different parts of universities. It can be found in industrial or systems engineering programs. It serves business schools in departments with words like "decision," "information," or "management science," in their titles.

So the price paid for such enormous usefulness is a lack of identity. Most people who've been served by OR have never heard of it. That's a poor state of affairs considering the rising need.

Our world grows more complex daily. Computer capability and a wealth of data put us in a better position than ever to handle that complexity. We live in an ideal environment for people who know the field -- especially if they can communicate as well as they can do the math. The possibilities are vast for students starting college. That is, of course, for those who've managed to find out what operations research is.

I'm Andy Boyd at the University of Houston, where we're interested in the way inventive minds work.

(Theme music)


J. E. Beasley. OR - Notes. Retrieved January 16, 2008.

E. A. Boyd, The Future of Pricing: How Airline Ticket Pricing Has Inspired a Revolution. (New York: Palgrave MacMillan, 2007): Ch. 9.

For more information about the field of operations research, Click Here.

INFORMS, the Institute for Operations Research and the Management Sciences, is the largest professional society of Operations Researcher in the world. For more information, see http://www.informs.org.

Process
Example, courtesy of Boeing, of an OR designed process.


Below: Scenes from the Houston Ship Channel. A constant flow of materiel that would not be possible without OR management. (Photos by JHL)
Materiel in motion Materiel in motion Materiel in motion

The Engines of Our Ingenuity is Copyright © 1988-2008 by John H. Lienhard.