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Abstract

This article estimates marginal propensities to consume (MPC) out of current and lagged
income for U.S. states using panel data regressions that control for time-specific and state-
level fixed effects. The MPCs vary across states, in particular, the MPC out of current income
is higher in states where income is more persistent and the MPC out of lagged income is
lower in agricultural states. Several models of individual consumer behavior are analyzed
and simulated in order to isolate a model which is able to match the estimated MPCs well.
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1 Introduction

We estimate marginal propensities to consume (MPC) out of current and lagged income for U.S.

states using panel data regressions that control for time-specific and state-level fixed effects. The

MPCs vary across states, in particular, the MPC out of current income is higher in states where

income is more persistent and the MPC out of lagged income is lower in agricultural states. We

then analyze and simulate models of individual consumer behavior and isolate a model which is

able to match the estimated MPCs well.

Virtually all current models of aggregate consumer behavior depart from the Friedman

(1957)-Hall (1978) Permanent Income Hypothesis (PIH). Hall (1978) showed that if consumers

are forward-looking, have rational expectations, evaluate consumption streams utilizing a quadratic

utility function, and can freely borrow and lend at a constant interest rate, consumption is a

martingale; i.e., a regression of period t consumption growth on any variable known at period

t − 1 should return an estimate of zero. Regressions using aggregate data, however, consis-

tently return an estimate significantly larger than zero when current growth in consumption

is regressed on lagged aggregate income growth—a phenomenon known as “excess sensitivity”

(of current consumption to lagged income). The PIH-model also provides closed-form solutions

for the predicted growth in consumption as a function of innovations to income when income

is described by a general Auto Regressive-Moving Average (ARMA) model. For example, if

income is a random walk, consumption is predicted to move one-to-one with income. Empirical

work using aggregate data consistently finds a significantly smaller reaction of consumption to

income shocks—a phenomenon known as “excess smoothness.”1

State-level data has several advantages for our study. Compared with purely macro ap-

proaches, the existence of 50 states with different income processes (some agricultural, some

oil-based, etc.) vastly expands the relevant variation and the number of data points. In addi-

tion, by considering state-level variation that is orthogonal to aggregate variation, simultaneity

problems are likely to be alleviated and U.S.-wide aggregate constraints will have little impact

on the results as argued by Ostergaard, Sørensen, and Yosha (2002) and Dejuan and Luengo-
1For studies of excess sensitivity, see Flavin (1981), Blinder and Deaton (1985), Campbell and Deaton (1989),

and Attanasio and Weber (1993). Building on the results in Hansen and Sargent (1981), excess smoothness has
been documented by Deaton (1987), Campbell and Deaton (1989), and Gaĺı (1991).
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Prado (2006).2 The persistence of state-level income affects the current MPC significantly—with

states with higher persistence exhibiting higher MPCs—consistent with a standard PIH model.

However, state-level consumption displays strong excess smoothness and sensitivity. Further,

we observe that excess sensitivity is higher in states where consumers are likely to face higher

income uncertainty. These facts imply that the PIH-model needs to be extended. We will do so

in stages in order to highlight the effect of each modification.

A simple and, we think, reasonable, explanation of excess sensitivity is that consumption

decisions are made at a higher frequency than the frequency of observation (annual).3 We allow

for a bi-annual frequency of income and consumption in the model and explicitly aggregate over

time. This helps explain the average level of excess sensitivity. However, excess sensitivity of

consumption is significantly higher in agricultural states which needs a separate explanation.

Based on the observation that farmers’ income is particularly volatile as shown by Carroll and

Samwick (1997), we show that the so-called buffer-stock model of savings, pioneered by Deaton

(1991) and Carroll (1992), can explain this pattern. This is a model of individual-level behavior

that does not allow for a representative agent and we simulate the model for a large number

of individuals, aggregate, and find the predicted MPCs by regressing on the simulated data.

This approach, therefore, also controls for potential biases that may arise from considering a

representative agent instead of aggregating across agents (see Attanasio and Weber 1993).

However, the buffer-stock model cannot fully explain the amount of excess smoothness as

already pointed out by Ludvigson and Michaelides (2001). Including durable consumption—in

the form of large indivisible durable goods that can only be purchased with a non-negligible down

payment—generates significant smoothness as found by Luengo-Prado (2006). Nonetheless,

the MPC out of current income is lower than the model with durable goods can explain with
2The state-level data is not plagued by the large amount of idiosyncratic variation in micro data and it is hard

to know what patterns in micro-data is likely to survive aggregation. Compared to cross-country data, the data
is collected in a consistent manner and most institutional features do not vary across states, making our results
less likely to suffer from omitted variable bias. One drawback of our state-level data, compared to macroeconomic
data, is that we only observe retail sales and not all components of consumption; however, no U.S. sources of
micro data is better along this dimension. For example, the much used Panel Study of Income Dynamics mainly
records food consumption rather than the total retail sales available at the state-level. In any event, studies based
on state-level data provide a useful complement to other studies.

3An alternative modification that might explain excess sensitivity would be to allow for habit formation. We
briefly explored this issue but did not find much evidence of habit formation in our data using common parametric
specifications as used by, for instance, Dynan (2000).
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“reasonable” parameterizations. To fully match the observed smoothness of consumption, we

follow Attanasio and Pavoni (2006) and assume that measured income shocks are imperfect

measures of shocks to consumers’ inter-temporal budgets.4 The models discussed so far assume

that a consumer’s budget constraint is determined by labor income and interest from safe bond

holdings. In the real world, asset income comes in many forms that often are not measured well,

in particular, capital gains have been large and variable during the sample we consider. Also,

individuals share risk with family members and through various ethnic, religious, etc. networks.

Therefore, labor income may be an imperfect measure of innovations to a consumer’s present

value of wealth, and a model that allows for partial risk sharing across states can explain the

low observed MPCs. Adding a simple form of partial risk sharing to the buffer-stock model

with durable goods and time-aggregation allows us to match the observed MPCs in a way that

simpler models cannot.

The remainder of the paper is organized as follows. Section 2 describes our empirical results.

Section 3 compares the ability of suitable parameterized models of consumer behavior to explain

the results found in Section 2, while Section 4 summarizes our conclusions.

2 Panel Data Estimation of the Income Process and the MPCs

2.1 Estimating the time series process for income

In forward-looking models, consumption patterns depend on the income processes so we start

by estimating time series models for income state-by-state for the years 1964–1998. Ostergaard,

Sørensen, and Yosha (2002) show that disposable labor income growth at the state-level is well-

modeled as an autoregressive (AR) model of order 1.5 A previous version of this paper, that

focused on the buffer-stock model and uncertainty, allowed for a more complicated process for

state-level income. Specifically, an additive i.i.d. income shock was allowed for beyond the AR-

term. However, for most states this transitory aggregate shock was not significant and only for
4In the case of perfect Arrow-Debreu markets, consumption should not react to individual specific labor income

shocks. However, an outcome where there is not perfect risk sharing (in the sense that labor income risk is not fully
insured) can be a constrained optimal outcome if income depends on unobserved effort as rigorously developed
by Attanasio and Pavoni (2006).

5We tested the level of disposable labor income for unit roots using an Augmented Dickey-Fuller test with one
lag and could only reject the unit root for 6 and 1 states at the 5% and 1% level, respectively. Therefore, the
growth rate of income is reasonably well modeled as a stationary variable.
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a few states did we find the parameter of the transitory shock to be precisely estimated. We,

therefore, find it preferable to use the simpler, more common, AR(1) specification. We elaborate

on this point because the predicted impact on consumption of the uncertainty (variance) of

state-level income depends on whether income shocks are transitory but our sample is too

short to convincingly decompose the state-level income processes into permanent and transitory

components.

Define the state-specific component of growth in disposable labor income as logGst =

∆ log Yst −∆ log Yt. In the data, mean growth rates vary by state but in our theoretical discus-

sion we do not explore the effects of state-varying growth rates. We make this choice because

in-migration in some states, such as Nevada, is so large that mean growth rates over 20-odd

years cannot easily be interpreted as reflecting the income growth prospects of individuals. In

the estimation of state-specific processes, we demean the data prior to estimation, and estimate

for each state s the process:

logGst = as logGs,t−1 + σGs ust,

where ust is i.i.d. standard normal and σ2
Gs

is the variance of the innovation term, σGs ust. We

refer to as as a measure of persistence—the larger as the larger effect an innovation of a given

size will have on expected future income.

In Table 1, we report the estimated values of as and σGs for each of the 50 U.S. states–data

sources are described in Appendix A. The persistence of state-specific shocks varies widely

across states. The point estimate of as is –0.53 for Idaho while the largest value of 0.50 is

found for Louisiana, with an average value of 0.07. If the aggregate effect is not removed

average persistence is significantly higher at 0.38 which reflects that the aggregate component

of income growth displays more persistence than the state-specific component. This difference

in persistence implies that forward-looking consumers will react more to aggregate than to

state-specific shocks in most states. Estimating an AR(1) process for aggregate income growth,

∆ log Yt = At, we obtain estimates of µA = 0.016, aA = 0.42 and σA = 0.02.
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2.2 Panel-data estimation of the MPCs

2.2.1 Econometric Implementation

Let cst ≡ ∆ logCst denote the growth rate of state-level consumption. In our implementation,

we regress cst on income growth, yst, and lagged income growth, ys,t−1, respectively. Aggregate

policy and aggregate interest rates affect consumption. It is not obvious how to best capture

such aggregate effects using exogenous regressors, so we follow Ostergaard, Sørensen, and Yosha

(2002) and perform all regressions in terms of the deviations from the average value across states

in each time period.6 In symbols, we regress cst − c̄.t on yst − ȳ.t and ys,t−1 − ȳ.,t−1, respectively,

where c̄.t = 1
50

∑50
s=1 cst is the time-specific mean of consumption growth and similarly for the

other variables. Removing time-specific means is equivalent to including a dummy variable for

each time period. Such time-specific dummy variables are referred to as time-fixed effects in the

panel-data literature, and including time-fixed effects implies that we are measuring the effect of

state-specific changes in income on state-specific consumption. We also want our results to be

robust to permanent differences between the states. For instance, some states may have higher

consumption growth due to demographic factors that are hard to control for. We, therefore,

also remove state-specific averages; i.e., we use data in the form (for a generic variable x):

zst = xst − x̄.t − x̄s. + x̄.., where x̄s. = 1
T

∑T
t=1 xst is the state-specific mean of x and the last

term is the overall average across states and time; this is added to keep the mean of zst equal

to 0. Using variables in this form is equivalent to including state-specific (and, as before, time-

specific) dummy variables. In the language of panel-data econometrics, we include a state-fixed

effect (also referred to as a “cross-sectional fixed effect”). We will use the shorter panel-data

econometric notation and write our regressions as:

cst = µs + νt + αc yst + ust , (1)

where the µs terms symbolize the inclusion of cross-sectional fixed effects and the νt terms

symbolize the inclusion of time-fixed effects. In the above regressions, αc is measuring the

current MPC. If X is a variable that might affect the MPC, we allow the MPC to change with
6Empirically, it matters little if the data is adjusted by subtracting average values of the state-level variables

or if U.S.-wide aggregate values are subtracted. The method chosen here is the most straightforward in terms of
implementation.
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X by estimating the regression:

cst = µs + νt + αc
st yst + ust, (2)

where αc
st = αc + ζc (Xst − X̄.t) .

In this regression, the current MPC is αc + ζc (Xst − X̄.t) where the time-specific average

of Xst is subtracted in order to remove U.S.-wide aggregate effects.7 We subtract the time-

specific average X̄.t from the X variable so the ζ-coefficient will not pick up variations in the

average (across states) MPC over time. We do not subtract the state-specific average from the

X variable. The goal is to study if the MPC varies across states and, indeed, many of the “X-

variables” we utilize are constant over time and would become trivially zero if the state-specific

averages were subtracted.

In our implementation, we will often include more than one interaction variable and each of

them will be treated as explained above. Our regressions using lagged income are done in the

exact same fashion, substituting yt−1 for yt everywhere.

We use the sample period 1970–1998 for which our data is available.8 We approximate

state-level consumption by state-level retail sales. We transform retail sales and labor income

to per capita terms and deflate them using the Consumer Price Index. Details are given in

Appendix A.

2.3 Regressors

We turn to the empirical estimation of the MPCs as functions of state-level variables. As

interaction terms, we use variables that capture state-level persistence of income shocks and

indicators of uncertainty.

Persistence of aggregate shocks. Our measure of the persistence of aggregate shocks in state

s is the estimated parameter âs shown in Table 1, column (1).
7In order to estimate this model, we regress cst on yst, (Xst − X̄.t)(yst − ȳ.t − ȳs. + ȳ..), and time- and

state-specific dummy variables.
8A previous version used a sample period starting in 1976. The results are not very sensitive to the exact

sample.
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Aggregate state-level uncertainty. The estimated standard error of the innovation to aggre-

gate income σ̂Gs , Table 1, column (2).

Individual-level income volatility. We use the share of farmers in a state. Farmers are subject

to substantially higher transitory income uncertainty than other income groups as documented

in table 4 in Carroll and Samwick (1997). Based on this result, we examine if the lagged

MPC is lower in states where a relatively large number of consumers can be expected to have

high variance of transitory idiosyncratic income. In our implementation, we use the interaction

variable “farm share” (number of employed—including proprietors—in farming divided by total

employment in the state).

Government sector jobs are less subject to the vagaries of nature and to the state-level

business cycle implying that the share of government employees may be a good proxy for states

with a low value of individual-level transitory uncertainty—see table 4 in Carroll and Samwick

(1997).

Correlation matrix for regressors. Table 2 presents the correlations of our regressors in the

estimations of current and lagged MPCs: the share of farmers in total employment, the share

of government employment and the interactions of these employment shares, and estimated

persistence and standard deviations of the income shocks interacted with income growth (non-

interacted persistence and standard deviations are not included as regressors as they would

be perfectly collinear with the state-fixed effects). The differences between the top and the

bottom part of the table are mainly in the correlations between the regressors with current

versus lagged income growth. The agriculture share “interaction” is strongly correlated with

the persistence interaction as well as with the parameter for aggregate uncertainty interacted

with income growth, which may render the interpretation of the variable uncertain, but the

share of government interaction is not highly correlated with other regressors.

2.4 Empirical results of the panel-data estimations

We estimate the model allowing for state- and time-specific variances. More precisely, we esti-

mate the model by feasible Generalized Least Squares (GLS) by first estimating the model using

ordinary least squares (OLS) and then estimating a time-specific variance and state-specific vari-
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ance for use in the second stage GLS regression. In specifications that involve the state-level

persistence and uncertainty parameters, the standard errors will be biased because these pa-

rameters are measured with error (they are “generated regressors”). We calculate adjusted

standard errors using a Monte Carlo method described in Appendix D.

Current MPC. Columns (1) and (4) of Table 3 show specifications where non-interacted

farm and government shares are included. The non-interacted terms are not significant and

subsequently dropped. These regressions simply document that the coefficients to the interaction

terms do not simply pick up left-out “linear terms.” Column (2) reports the MPC out of current

income from a regression of consumption growth on current income growth and current income

growth interacted with the four variables that we suspect may affect the MPC. In column (3), we

show the results leaving out regressors that are clearly insignificant. Because all the interaction

variables have the time-specific mean subtracted, the coefficient to current income growth is

the predicted value for a typical state—i.e., a state with average persistence, agricultural share,

etc. We find that the MPC out of current income for a typical state is 0.33 (or 0.34 from

the column (2) specification). This is clearly lower than the prediction of a PIH model with

persistent income shocks such as was found for state-level income. This is, of course, the well-

known “excess smoothness” result that we will focus on explaining in Section 3.

The effect of persistence is estimated robustly and clearly significant at the 1% level. The

estimated value of the coefficient to persistence of state-specific income is 0.53 from column (23)

and even larger from column (2). This corresponds to a large economic impact. For example,

the MPC in Iowa (with persistence –0.38) is predicted to be about 0.10 while the MPC in

Washington (with persistence 0.40) is predicted to be 0.51.9 The effect of persistence is estimated

to be slightly larger when other interaction terms are included. The state-specific variance of

the innovation to state-level income is significant at the 10% level. We suspect that state-level

uncertainty may influence consumption patterns but we are not able to identify this with any

certainty.

Lagged MPC. Table 3 also examines the same specification in terms of the MPC out of

lagged income (“excess sensitivity”). For the average state, the MPC is estimated to be 0.16
9The number for, e.g., Iowa, is obtained as 0.33 + 0.53× (−0.38− 0.07), where the term −0.07 corresponds to

the subtraction of the average value.
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in column (5) which includes all interactions. The effect of lagged income growth is robustly

estimated—the coefficient is 0.17 in column (6), which includes only the significant regressors,

and significant at the 1% level. Clearly, consumption displays excess sensitivity in our data. The

interaction terms involving parameters of the estimated income process are clearly insignificant.

This is somewhat encouraging because PIH-type models predict that persistence affects the

current MPC and not the lagged MPC and the fact that the data so clearly displays this pattern

indicates that our results are not likely to be spurious. We find a clear effect of the agricultural

share, with more agricultural states displaying much lower sensitivity to lagged income shocks.

We believe that this is due to a higher level of income uncertainty in agricultural states, a

belief that is reinforced by the fact that states with large government employment display the

opposite pattern. The interaction terms for both these variables have extremely large levels

of statistical significance.10 We next turn to more rigorously evaluating if a combination of

standard consumption models can explain these patterns.

3 Alternative Consumption Models

Our analysis will show that a combination of models is indeed required to account for the state-

level MPCs that we just presented. In particular, we need forward-looking rational consumers,

liquidity constraints and indivisible durables, buffer-stock saving, and risk sharing.

This section briefly presents the different models we consider. We compare a PIH model,

a standard buffer-stock model, an augmented buffer-stock with durables and collateral credit

constraints, and a simple model with rule-of-thumb consumers (i.e., agents who consume their

income every period). We also discuss time-aggregation and risk sharing. Before focusing

on the predictions of each model, in Table 5, we present the income process common to all

models. Then, we briefly discuss how the models differ, as well as our calibration and aggregation

procedures.
10Large coefficients of opposite sign are sometimes an indicator of multi-collinearity so we remind the reader

that the government and agricultural employee shares are not strongly correlated. Also, if we drop one of these
regressors the coefficients of the remaining regressors change by little.
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3.1 The income process

In all models considered, disposable labor income is assumed to be exogenous to the agent,

stochastic, and the only source of uncertainty. We assume the income of agent j in state s

follows the model:

Yjt = PjtVjt,

Pjt = Pjt−1AtGstNjt. (3)

Labor income, Yjt, is the product of permanent income, Pjt and an idiosyncratic transitory shock,

Vjt. At can be thought of as growth of permanent income attributable to aggregate productivity

growth in the country, while Gst reflects growth of permanent income specific to state s. Njt is

a permanent idiosyncratic shock. logNjt and log Vjt are independent and identically normally

distributed with variances σ2
N and σ2

V , and means −σ2
N/2 and −σ2

V /2, respectively. logAt is

assumed to be an AR(1) process with persistence aA, unconditional mean µA, and variance σ2
A.

logGst is also an AR(1) process with persistence as, mean 0, and variance σ2
Gs

.

This income specification is useful since it allows for consumers to share in aggregate and

state-specific growth while the variance of their income can be calibrated to be dominated by

idiosyncratic permanent or transitory components. The formulation implies that the growth rate

of individual labor income follows an ARMA process, ∆ log Yjt = logAt + logGst + logNjt +

log Vjt − log Vjt−1, consistent with microeconomic evidence (e.g., MaCurdy 1982, Abowd and

Card 1989). By the law of large numbers, aggregate income growth can be written as ∆ log Yt =

logAt, while state-specific income growth is ∆ log Yst − ∆ log Yt = logGst.

3.2 The models

The Permanent Income Hypothesis

The PIH assumes forward-looking rational consumers. The basic set up is as follows. Con-

sumer j maximizes the present discounted value of expected utility from consumption of a

nondurable good, C. Let β ≤ 1 be the discount factor and R the interest factor (gross interest

rate). Sjt is agent j’s holding of a riskless financial asset at the end of period t. Each period,
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the funds available to agent j consist of the gross return on assets RSjt−1 plus Yjt units of labor

income. The agent chooses optimal consumption Cjt according to the maximization problem:

max
Cjt

E0

{ ∞∑
t=0

βt U(Cjt)

}

s.t. Sjt = RSjt−1 + Yjt − Cjt. (4)

The utility function is assumed to be quadratic, βR = 1, and there are no liquidity constraints.

The PIH-model provides closed-form solutions for the predicted growth in consumption as

a function of innovations to income. Hansen and Sargent (1981) and Hansen, Roberds, and

Sargent (1991) show that if income can be represented by the ARMA process a(L)Yjt = b(L)εjt,

the PIH predicts that:

∆Cjt =
R− 1
R

εjt × b
(

1
R

)
a

(
1
R

) , (5)

where εjt is the income innovation. See Deaton (1992) for a textbook exposition. For example,

if income growth is an AR(1) process with persistence a:

∆Cjt =
R

R− a
εjt.

When a > 0, consumption should react more than one-to-one to changes in current income. On

the other hand, the predicted MPC out of lagged income is 0 (see Appendix C for more details).

Furthermore, because of certainty equivalence, changes in the volatility of income (keeping the

mean fixed) do not affect the MPCs. This allows us to study the aggregate implications of the

model by analyzing a representative-agent model where the representative consumer receives

aggregate income.

The Buffer-Stock Model

The buffer-stock model also considers forward-looking rational consumers. However, in this

setup consumers are impatient (βR < 1) and prudent with a constant relative risk aversion

utility function, U(Cjt) =
C1−ρ

jt

1−ρ . With ρ > 0, the agent is risk-averse and has a precautionary

motive for saving.
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In the literature, buffer-stock savings behavior has been derived from two different assump-

tions. Deaton (1991) explicitly imposes a no-borrowing constraint, Sjt > 0, but assumes agents

always receive positive income. Carroll (1992), on the other hand, endogenously generates a no-

borrowing constraint by assuming individuals may receive zero income (a transitory disastrous

state) with a very small probability. In this case, the agent will optimally never want to borrow

to avoid U ′(0) = ∞. We follow Deaton’s specification in this paper.

A closed-form solution to the model does not exist and it must be solved by computational

methods (see Appendix D). It is well-known that consumption functions for a buffer-stock

consumer are nonlinear, so explicit aggregation is needed to obtain implications for aggregate

consumption. In this case, the MPCs depend both on persistence and uncertainty levels. How-

ever, Ludvigson and Michaelides (2001) show that an explicitly aggregated buffer-stock model

cannot replicate the excess smoothness and excess sensitivity observed in U.S. aggregate data

and recur to incomplete information to generate some excesses. The assumption that agents

have less information about their own income than econometricians is somewhat controversial

and the amount of smoothness generated by this assumption does not seem large enough to

explain the very significant smoothness found in state-level data. Other mechanisms that can

lower the predicted current MPC are habit formation (see Carroll 2000, Michaelides 2001), or the

inclusion of indivisible durables that can only be purchased with non-negligible down payments

(see Luengo-Prado 2006). Both mechanisms deliver an optimal sluggish response of consumption

to changes in permanent income that can generate some excesses. We describe a buffer-stock

model with durables and down payments next.

An Augmented Buffer-Stock Model with Durables and Down Payments

Our buffer-stock model with nondurables, durables and down payment requirements follows

Luengo-Prado (2006). Consumer j derives utility from the consumption of a nondurable good C

and the services provided by a durable good K (for simplicity we assume that durable services

are proportional to the durable stock). The consumer solves:

max
{Cjt,Kjt}

V = E0

{ ∞∑
t=0

βt U(Cjt,Kjt)

}
,
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s.t. Sjt = RSj,t−1 + Yjt − Cjt − (Kjt − ψKj,t−1) − χ(Kjt,Kj,t−1),

Sjt ≥ −(1 − θ)Kjt,

where ψ is the depreciation factor (one minus the depreciation rate) and χ(Kjt,Kj,t−1) is an

adjustment cost function equal to 0 if Kj,t = ψKj,t and φψKj,t−1 otherwise. This adjustment

cost can be interpreted as a proportional loss in the selling price of the durable stock attributed

to any type of cost incurred upon sale, such as sales commissions or imperfections in the resale

market for the durable. We assume that the instantaneous utility function is separable in the

two goods and is of the CRRA type, U(Cjt,Kjt) =
C1−ρ

jt

1−ρ +
K1−ρ

jt

1−ρ .11

An important aspect of the model is the collateralized constraint imposed on the agent,

Sjt ≥ −(1− θ)Kjt, with θ ∈ [0, 1]. This implies that an individual’s borrowing limit is a fraction

(1 − θ) of the durable stock. The constraint summarizes several commonly observed aspects of

collateral lending. A household can finance a fraction (1 − θ) of durable purchases but must

provide a fraction θ of the durable’s value as a down payment. On the other hand, a household

owning a durable good can obtain a durable-equity loan with a maximum loan-to-value ratio

(1 − θ). This wealth constraint alters the allocation of resources between the durable and the

nondurable goods and has implications for the volatility of the consumption of the two goods.

Luengo-Prado (2006) shows that in this framework, nondurable consumption becomes smoother

relative to income as down payment requirements increase for two different reasons. First, when

income is transitorily low, a buffer-stock consumer on occasion liquidates the equity accumu-

lated in the durable to prop up nondurable consumption. Since higher required down payments

translate into higher levels of equity, nondurable consumption becomes smoother. Second, when

an individual experiences a positive permanent income shock, he or she chooses not to fully

adjust consumption due to the desire to spread out the cost of accumulating a down payment.

Thus, the sluggish response of durable and nondurable consumption to changes in permanent

income can generate robust excesses at the aggregate level for reasonable parameter values. In

this model, ceteris paribus, the higher θ relative to the user cost of the durable, R − ψ/R, the

higher the excesses.
11We follow Bernanke (1984) who studies the joint consumption of durable and nondurable goods and finds

that separability is a good approximation. With regards to prices, we assume that PC
t /P

K
t = 1, ∀t.
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As for the standard buffer-stock model, there is no closed-form solution (see Appendix D for

a brief description of our computational method) and explicit aggregation is needed to obtain

implications for aggregate consumption. The MPCs depend on both persistence and uncertainty

levels in this model also.

Rule-of-Thumb Consumers

In this setting, agents consume their income every period (Cjt = Yjt) and this model does

not generate excess smoothness since ∆Cjt = ∆Yjt. The rule-of-thumb model (ROT) generates

excess sensitivity only if income growth is persistent. As in the PIH case, the aggregate im-

plications of this model can be calculated by assuming that a representative agent receives the

aggregate income process.

Time-Aggregation

We anticipate that neither the PIH model nor the standard buffer-stock model generate

robust excess sensitivity at the state-level. In order to generate additional sensitivity, we take into

account that consumers’ decision intervals and data-sampling intervals may be different, i.e., we

allow for temporal aggregation. Time-aggregation generates excess sensitivity in a representative

PIH model (see Working 1960). Appendix C spells out the details. Time-aggregation also

delivers additional excess sensitivity in buffer-stock models.

Risk Sharing

We find that the sensitivity of consumption to current income shocks is much lower than can

be explained by the models considered thus far. A potential explanation could be that inno-

vations to measured disposable income are not a correct measure of the changes in consumers’

actual budget constraints.

The predicted change in consumption in the PIH-framework, see equation (5), is calculated

using two features of the model. The first is the celebrated martingale result of Hall (1978) and
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the second is simply the inter-temporal budget constraint:

∑ (
1
R

)k

Ct+k = St +
∑ (

1
R

)k

Yt+k , (6)

where St measures asset holdings at the beginning of period t. An income shock εt gives rise to

a change in the right-hand side of the budget constraint that affects consumption by the factor

shown in equation (5). Consider the situation where risk sharing takes the form of a “transfer”

τt to the representative agent which is not part of measured disposable income paid out of

U.S. aggregate consumption. Such transfers will render equation (6) invalid for the purpose

of determining consumption. We will outline the argument further below—a more detailed

discussion of this issue can be found in Attanasio and Pavoni (2006).

In the real world, payments of dividends, interest, and rent are not fixed interest rate returns

and the stochastic returns potentially provide substantial smoothing of the labor income of U.S.

states. The variable τ will capture such deviations from the model. Stochastic returns could

possibly be measured or imputed but τ also is likely to capture a host of other variables that

“break” the budget constraint based on measured disposable income, such as unmeasured capital

gains, financial help from family and friends, misreported income, bankruptcy, etc. While many

potential unmeasured transfers come to mind, it is hard to know their quantitative importance.

However, examining the degree of excess smoothness can help assessing this, as pointed out by

Attanasio and Pavoni (2006). Recall that our empirical work includes time-fixed effects so any

aggregate numbers will not affect our results and, consequently, τt, as well as εt, should—for the

purpose of this paper—be interpreted as state specific variables that average to 0.

Assume that consumption is a martingale but the budget constraint is:

∑ (
1
R

)k

Ct+k = St +
∑ (

1
R

)k

(Yt+k + τt+k) . (7)

If there is full risk sharing, the variable Yt+k + τt+k will simply be zero (when the variables

are measured as deviations from aggregate variables). However, perfect risk sharing is not the

optimal outcome in a situation where moral hazard makes agents likely to supply less (or no)

effort under full risk sharing. Abraham and Pavoni (2005) develop a model where agents’ effort is

unobserved and agents have access to a bond market with a fixed interest rate but where agents’

asset holdings are unobserved. In such a setting, partial risk sharing will be a constrained

15



optimum under certain parametric assumptions. The intuition is that it has to provide positive

utility for agents to provide effort even if part of the fruits from effort will be shared due to

risk sharing. However, as long as agents have access to a bond market the Euler equation for

consumption will hold and, in particular for the quadratic utility case, consumption will be a

martingale if the interest rate equals the subjective time discount rate.12

If the temporal behavior of Y + τ can be described by the ARMA-process α(L)(Yt + τt) =

+β(L)vt, where vt is the innovation to after risk sharing income, then predicted consumption

will satisfy:

∆Ct =
R− 1
R

× β( 1
R)

α( 1
R)

vt,

if utility is quadratic and the interest rate equals the time discount rate. In other words, the

PIH still holds but post-risk sharing income replaces income. In a regression of ∆Ct on current

income of the form:

∆Ct = µt + γ∆Yt + ut, (8)

the right hand side variable can be interpreted as Yt + τt plus a measurement error (−τt). If the

measurement error is uncorrelated with the true regressor, it is well-known downward bias will

occur. If one is willing to make strong parametric and functional form restrictions, one can obtain

a stronger prediction. We, again, refer the reader to Attanasio and Pavoni (2006) for details and

note that they derive a model with moral hazard due to unobserved effort where Yt + τt = ωyt

for a constant ω < 1. One can consider 1 − ω the amount of partial risk sharing and the value

of ω can be deduced from the observation that in regression (8), the estimated coefficient γ will

be ω × � where � is the coefficient one would obtain in the “correct” PIH-regression:

∆Ct = µt + �∆(ωYt) + ut. (9)

In other words, if there is 50% partial risk sharing the estimated coefficient in a regression of

consumption on measured disposable income will be 50% lower than predicted by a model that

ignores risk sharing. The coefficient to lagged income will similarly be 50% lower. Note, that

ω measures the amount of consumption insurance “starting from” measured disposable labor
12The assumption that asset holdings are unobserved is necessary for this outcome to be optimal. If asset

holdings were observed a planner could control those and the properties of the model would change.
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income. If state-level output is the relevant state-level endowment shock, a lot of risk sharing

can take place between financial institutions, firms, and governments and ω would be a lower

bound for “total” risk sharing. Asdrubali, Sørensen, and Yosha (1996) measure state-level overall

inter-state risk sharing but do not attempt to separate the amount of consumption smoothing

taking place through optimal savings behavior (“self-insurance”) from the amount of partial

(unobserved) risk sharing measured by ω.

For the interpretation of our results we make approximations. We assume, as is typical in the

PIH-related literature, that the relations derived for the change in variables approximately hold

for the change in log-transformed variables. Also, we will assume that the considerations in this

section are approximately valid in the setting where the consumer may face credit constraints.

3.3 Calibration and aggregation procedures

Calibration

A good calibration of the income process is essential to obtain qualitative and quantitative

predictions. To calibrate the aggregate and state-level income shocks, we use our estimates of

Section 2.1. As the baseline state-level income shock, we use the simple average across states of

the estimated AR(1) parameters in Table 1. Idiosyncratic income shocks are taken from previous

studies—see, for example, Carroll and Samwick (1997) and Gourinchas and Parker (2002). In

particular, we set σV = 0.07 and σN = 0.05 in the benchmark calibration.

Regarding other parameters, the interest rate is set to 2%. In the buffer-stock models risk

aversion is ρ = 2 and the discount rate is 5%, both standard in the literature. For the buffer-stock

model with durables, we follow Luengo-Prado (2006) and set the adjustment cost parameter, φ,

equal to 5%, a typical realtor’s commission. ψ, the depreciation factor, is set to 0.915, implying

an annual depreciation rate of 8.5%.13 The down payment parameter θ is 0.3.14

13We obtain this number by combining data from the National Income and Product Accounts and the Fixed
Assets and Consumer Durable Goods Accounts from the Bureau of Economic Analysis for the years 1959–2001.
We interpret durables, K, in a comprehensive manner as the sum of residential stocks and all consumer durable
goods. Accordingly, investment in durables, I, is calculated as expenditure on consumer durables plus residential
private domestic investment. We assume the U.S. is in steady state and calculate the real, average ratio of
investment on durables to the durable stock, which determines the depreciation rate: 1 − ψ = I/K.

14According to the Federal Housing Finance Board, the average down payment for a house for the period 1963–
2001 was 25 percent. We choose the slightly higher number because we include durables other than houses in our
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Aggregation procedure

While it is possible to work with a representative-agent model for the PIH and the ROT

model, it is well-known that consumption functions for a buffer-stock consumer are nonlinear, so

explicit aggregation is needed to obtain implications for aggregate consumption. Our simulation

exercise is similar in spirit to that of Ludvigson and Michaelides (2001), who calibrate their

income process to match U.S. aggregate income and focus on explaining excess sensitivity and

excess smoothness at the aggregate level. Our goal, however, is to assess how income persistence

and income uncertainty impact the MPCs using state-level data, so we proceed in a different

manner.

Ideally, we would like our simulation exercise to be as close as possible to the empirical

strategy in Section 2.2. Briefly, we would like to simulate 50 states with different persistence and

uncertainty parameters and a common aggregate productivity shock. Then, we would run panel-

data regressions with both state-fixed effects and time-fixed effects. The inclusion of time-fixed

effects is important because this removes the first-order impact of the more persistent aggregate

(U.S.-wide) shock—due to the non-linearity of the model, the results are not, however, identical

to simulating the model without any U.S. wide component. Due to computational limitations,

we simulate “states” with state-specific shocks generated from a common distribution. In other

words, our simulated states are ex-ante identical but ex-post different because they are subject

to different shocks.15 We calculate marginal effects on the MPCs of changes in persistence, and

changes in transitory and permanent uncertainty by changing the parameters of our baseline

calibration (for all states) one at a time.

We simulate income paths for 30,000 individuals in 10 states—3,000 per state—for a number

of periods. All individuals share a common aggregate shock each period and individuals living

in the same state share state-specific shocks. Using the optimal consumption functions and

the simulated income paths, we calculate state-level consumption, and state-level income—Cst,

Yst—as the average of individual consumption and income over all consumers living in “state”

interpretation of K.
15Thus, state-fixed effects are not necessary in the regressions with simulated data but are included for compa-

rability with the regressions using actual data.
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s. Then, we run the following panel regressions:

∆ logCst = µs + νt + αc ∆ log Yst + ust, (10)

∆ logCst = µs + νt + αl ∆ log Ys,t−1 + ust. (11)

µs are state-fixed effects and νt are time-fixed effects that control for aggregate effects. Thus,

α̂c is the estimated MPC out of current state-specific income shocks, and similarly α̂l is the

estimated MPC out of lagged state-specific income shocks—for brevity, we refer to them as the

current/lagged MPCs. We repeat this process 20 times and report, in Table 5, the average

current and lagged MPCs across the 20 independent samples. We report the average of the

estimated standard error (for each parameter) across the 20 samples in parentheses.16

Time-aggregation

In some simulations, we take into account that consumers’ decision intervals and data-

sampling intervals may be different and allow for temporal aggregation. In particular, we assume

that while agents make decisions on a bi-annual basis, we only observe annual data. In our re-

gressions with simulated data, state-level consumption in year t is simply Cst = C1
st +C2

st, where

C1
st and C2

st are calculated as the average of individual consumption in state s for the first and

second half of the year, respectively, and analogously for income. All relevant parameters are

adjusted to the bi-annual frequency for these simulations. Table 4 compares the benchmark

parameter values at both frequencies. Details on how to adjust the income parameter values are

presented in Appendix E.

3.4 Models’ predictions regarding the MPCs

Table 5 presents results comparing the predicted state-level MPCs for the different models in

our benchmark calibration. While for the PIH and the ROT models the MPCs are calculated

analytically, for the buffer-stock model the MPCs are calculated through explicit aggregation
16Adding more samples to the simulations does not change the results significantly. For example, for the

augmented buffer-stock model and 100 samples, the current and lagged MPCs are 0.758 (0.01) and 0.357 (0.033),
respectively. With 20 samples, the numbers are 0.756 (0.01) and 0.358 (0.033), as shown in Table 5.
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via simulations. Estimated standard errors are given in parentheses.17

We first focus on the results without time-aggregation or risk sharing. Given that the state-

specific permanent shock is persistent in our benchmark calibration (as = 0.07), the PIH predicts

a current (state-level) MPC higher than 1, roughly 1.07. The lagged MPC is 0. The ROT model

predicts a current MPC of 1, since in this case the change in consumption is simply the change

in income. In the buffer-stock model, agents cannot borrow and even though they have some

assets because of prudence, asset holdings are small due to impatience. Hence, individuals can-

not increase consumption as much as PIH consumers would, when facing a persistent positive

permanent shock, resulting in a lower current MPC and a higher lagged MPC. For our baseline

case, the current and lagged MPCs in the buffer-stock model are 1.0 and 0.04 respectively. In

the buffer-stock model with durables, the current and lagged MPCs are 0.79 and 0.1, respec-

tively. With a non-trivial down payment (30%), agents choose not to adjust consumption levels

immediately when facing permanent income shocks, preferring to spread out the accumulation of

required wealth holdings. As a result the current MPC is lower than in a standard buffer-stock

model and the lagged MPC is higher.

All these numbers are far from their empirical counterparts: the estimated current MPC

is 0.33, while the estimated lagged MPC is 0.17. Allowing for time-aggregation increases the

predicted lagged MPC considerably and decreases the current MPC slightly (except for the ROT

model). For the PIH, the current MPC is 1.04 and the lagged MPC is 0.15. For the buffer-stock

model with durables, the current MPC goes down to 0.76, while the lagged MPC becomes 0.36.

One might generate higher smoothness and more sensitivity by increasing the required down

payment significantly but down payments of, say, 50% of more do not appear to be common.

Adding 50% risk sharing to this model delivers a current MPC of 0.38 and a lagged MPC of

0.18, much closer to their empirical counterparts. The assumption of partial risk sharing of the

simple form applied here, and by Attanasio and Pavoni (2006), allows us to fit the smoothness

of consumption in any of the models considered—for example, we could assume the PIH model

with time-aggregation and about 70 percent risk sharing. However, allowing for such a large

amount of risk sharing would lead us to predict virtually no excess sensitivity.
17These are the average estimated standard errors of α̂c and α̂l in regressions (10) and (11), respectively, across

the 20 independent samples.

20



Both time-aggregation and risk sharing are needed to obtain MPCs close to their empirical

counterparts. Therefore, we focus the reminder of our analysis on models that include these

features. In particular, we concentrate on the PIH and the augmented buffer-stock model.

Table 6 presents results regarding the effects of persistence and uncertainty on the MPCs in

these two models.

Decreasing persistence to –0.1 lowers the MPCs out of current and lagged income in the

augmented buffer-stock model (from 0.38 to 0.35 and from 0.18 to 0.32 respectively). In the

PIH, the current MPC declines from 0.52 to 0.4, while the lagged MPC increases slightly from

0.07 to 0.08. We can calculate the marginal effect of persistence as the change in the MPC

relative to the benchmark case divided by the change in the persistence parameter. Table 6

shows that the marginal effect of increasing persistence on the current MPC is 0.72 in the PIH-

model, quite large, and 0.15 in the buffer-stock model. The marginal effect of persistence on the

lagged MPC is –0.06 in the PIH-model and 0.29 in the buffer-stock model.

Next, we examine the marginal effects of uncertainty by changing the standard deviation

of the different income shocks one at a time. Contrary to the PIH case, these changes have

large effects on the MPCs in the augmented buffer-stock model. We start with the idiosyncratic

shocks by reducing their standard deviations by half (one at a time). Because of less uncertainty,

agents save less, which might be expected to lead to higher current MPCs. However, with less

savings and liquidity constraints, agents cannot increase consumption as much in response to a

persistent positive permanent shock. This effect tends to lower the MPCs out of current income

and offsets the former effect in the case of transitory uncertainty and dominates in the case of

permanent uncertainty (in our simulations, the marginal effect of transitory uncertainty on the

current MPC is 0.06, while the marginal effect of permanent uncertainty is 0.76). Note that the

lagged MPCs are higher because with lower savings agents are liquidity constrained more often.

The marginal effects in Table 6 look quite large: –0.5 for transitory uncertainty and –0.8 for

permanent uncertainty. However, a unit increase in the standard deviation of any of the income

shocks corresponds to quite a massive increase in uncertainty.

Finally, more state-level aggregate uncertainty is introduced by changing the standard devia-

tion of the state-level shocks one at a time.18 More state-level aggregate permanent uncertainty
18We increase the standard deviation in this case. The direction of the changes are chosen such that the model
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results in a higher current MPC in these simulations. Because agents hold more assets due to

higher uncertainty, they can adjust consumption more promptly in response to persistent positive

permanent income shocks, which increases the current MPC. Also, consumers are constrained

less often and the lagged MPC decreases slightly.

The clear finding that states with more persistent income shocks have higher sensitivity to

income provides strong support to forward-looking models such as the PIH and precautionary

savings models. Instrumental in bringing the predicted smoothness to the level observed is the

combination of credit constraints and durable goods together with partial risk sharing. Time-

aggregation will then explain the observed sensitivity to lagged income while 50% risk sharing is

not so large as to drive the predicted sensitivity to zero. The impatience that creates buffer-stock

behavior is necessary to explain why states where agents are likely to face significant individual

level uncertainty display less sensitivity.

A model that roughly fits the behavior of U.S. state-level consumption (when adjusted for

aggregate components) is a model with time-aggregation and 50% partial risk sharing where

half the population behaves like PIH-consumers while the other half faces credit constraints,

is impatient, and demands lumpy durable goods. The predicted MPCs and marginal impacts

of our regressors are displayed in the right-most third of Table 6. The predicted current MPC

is at the high end of a 95% confidence interval for the estimated current MPC in Table 3 and

the marginal effect on the current MPC of persistence is somewhat lower (by one standard

deviation) than the coefficient to the persistence interaction found in Table 3. Nonetheless, the

overall impression is that this model does an impressive job of matching the features of the data.

4 Conclusions

Using panel-data regressions, we document that state-level consumption displays strong excess

smoothness and sensitivity. Also, the persistence of state-level income affects the current mar-

ginal propensity to consume significantly, with states with higher persistence exhibiting higher

MPCs. Further, we observe that excess sensitivity is higher in states where consumers are likely

to face higher income uncertainty.

satisfies the convergence condition of footnote 21.

22



We show that a combination of models is required to simultaneously explain these features.

While the effect of income persistence on the current MPC is consistent with a standard forward-

looking model such as the PIH, this setup alone cannot account for the magnitude of excess

smoothness and sensitivity observed in state-level data, nor the dependency of the MPCs on

uncertainty indicators. A simple explanation of excess sensitivity may be that consumers make

decisions at a higher frequency than the data available to econometricians. Excess smoothness

can be explained by the fact that innovations to measured disposable income may not be the right

measure of changes in a consumer’s actual budget constraint in the presence of unobserved risk

sharing. Further, buffer-stock behavior is consistent with the observed higher excess sensitivity

in agricultural states. A suitably calibrated model that combines these features can fit the data

fairly well.

Our work in this article put together a model in order to fit the data. In order to actually

test this model, one would need to estimate it on independent data from, say, another country.

Such testing would be an interesting topic for future work.

Appendices

A The Data

We use state-level annual data from a variety of sources. We construct state-level disposable

labor income for the period 1964–1998 using data from the Bureau of Economic Analysis (BEA).

We define labor income as personal income minus dividends, interest, and rent, and social

security contributions. We calculate after-tax labor income by multiplying labor income by

one minus the tax rate, where we approximate the tax rate by total personal taxes divided by

personal income for each state in each year. We refer to the resulting series as disposable labor

income or—for brevity—just as labor income or income. The panel regressions in Section 2.2

use a shorter sample, 1970–1998, due to lack of availability of other variables prior to 1970.

However, in order to obtain more precise parameter estimates we use the larger sample in the

income estimations of Section 2.1. We also, for robustness, used the BEA disposable personal

income data by state and found qualitatively similar results.
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We perform state-by-state Augmented Dickey-Fuller (ADF) tests for unit roots in labor

income. These tests reject the unit root null hypothesis for only a few states at conventional

levels of significance. ADF tests provide somewhat weak evidence because they have low power

for samples as short as ours. The overall impression is, nevertheless, that U.S. state-level labor

income is well-described as an integrated process.19 We, therefore, treat labor income growth

as a stationary series.

We approximate state-level consumption by state-level retail sales published in the Survey

of Buying power, in Sales Management (after 1976, Sales and Marketing Management). Retail

sales are a somewhat noisy proxy for state-level private consumption but no better data seems to

exist. The retail sales data is available from 1963–1998. The correlation between annual growth

rates of aggregate U.S. total (nondurable) retail sales and aggregate U.S. total (nondurable and

services) private consumption from the National Income and Product Account, both measured

in real terms and per capita, is 0.84 (0.65). We transform the retail sales and labor income series

to per capita terms using population data from the BEA and deflate them using the Consumer

Price Index from the Bureau of Labor and Statistics (BLS).

B Estimation of Standard Errors

Because the parameters for the state-level income processes are estimated in an initial regression

they are random variables. This “generated regressors” problem leads to bias in the standard

errors reported by OLS. We, therefore, use a “parametric bootstrap” procedure to calculate

standard errors for all the coefficients.

Our approach is as follows. We regress consumption growth on the non-generated regressors

Xst (including fixed effects) and the estimated regressors Ys (which do not vary over time) using

OLS (after weighting the variables with state- and time-specific estimated standard errors):

cst = Xstγ + Ysδ + es ,

where s = 1, . . . , 50 is an index of the states, t = 1, ..., T is an index of time, and γ and δ

19Ostergaard, Sørensen, and Yosha (2002) show that panel unit root tests for disposable income—when aggre-
gate income is subtracted—provide little evidence against the unit root hypothesis. Disposable income is highly
correlated with labor income state-by-state and the results using labor income are similar.
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are OLS-coefficients. From this regression, we retrieve the estimated values γ̂ and δ̂ and the

estimated standard error se of the residuals es. We proceed to estimating the standard errors of

γ̂ and δ̂ from the following Monte Carlo experiment. In each iteration l we draw from an i.i.d.

N(0, se) distribution a vector of variables, e(l)st (s = 1, . . . , 50 ; t = 1, . . . , T ). We generate the

variable

c
(l)
st = Xstγ̂ + Ysδ̂ + e

(l)
st .

Then, for each state s and time period t, we generate Y
(l)
s by drawing from an N(Ys,ΣY s)

distribution where ΣY s is the variance matrix with the estimated standard errors of Ys reported

in Table 1 in the diagonal (for example, 0.017 for persistence in Alabama).

We then perform a panel-data regression of c(l)st on Xst and Y
(l)
s and record the estimated

coefficients γ̂(l) and δ̂(l). We repeat this for l = 1, ..., 25000 and then calculate the standard

errors of γ̂(l) and δ̂(l). These are the standard errors reported in the tables.

C The MPC in the PIH Case

This appendix describes how to calculate the approximate current and lagged MPCs for the

PIH-model. First, we show how consumption reacts to income innovations and then we discuss

time-aggregation issues.

Consumption Growth and Innovations to Income

Given our assumptions about the income process, state-specific income growth is ∆(log Yst−
log Yt) = logGst. For notational simplification, let gt = logGst and log Yst − log Yt = yt. By

assumption, gt = asgt−1 + εt. We drop the superscript in s hereafter. Thus, ∆yt = gt =

a∆yt−1 + εt.

Because the PIH is formulated in levels rather than logs, we must assume the process for

the first difference of state-specific income can be approximately described by the process for

the log difference: ∆(log Yst − log Yt) � ∆(Yst − Yt). Hansen and Sargent (1981) and Deaton

(1992) show that if income can be represented by the ARMA process a(L)yt = b(L)εt, the PIH

predicts that: ∆Ct = R−1
R εt × b

(
1
R

)
/a

(
1
R

)
.
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The ARMA representation for our state-specific income process is (1 − aL)(1 − L)yt = εt.

Thus, the consumption change in period t can be written as:

∆Ct =
R

R− a
εt = Hεt. (12)

H equals 1 when a = 0 and increases with persistence. We can calculate the MPC out of

current and lagged state-specific income as cov(∆Ct,∆yt)
var(∆yt)

and cov(∆Ct,∆yt−1)
var(∆yt−1) respectively. In this

case, var(∆yt) = σ2
ε/(1 − a2), cov(∆Ct,∆yt) = Hσ2

ε , cov(∆Ct,∆yt−1) = 0. Thus, the current

MPC is equal to H × (1 − a2) and the lagged MPC is 0.

Time-Aggregation

We assume that agents make consumption decisions bi-annually but we only observe data

at annual frequencies (i.e., we observe Ct = C1
t + C2

t , where Ci
t is consumption in the ith half

of year t, i = 1, 2).

Using equation (12)—valid for the relevant frequency in the agent’s optimization problem—

we can derive an expression for C1
t and C2

t :

C1
t = C2

t−1 +Hε1t = C1
t−1 +H(ε1t + ε2t−1),

C2
t = C1

t +Hε2t = C2
t−1 +H(ε2t + ε1t ), (13)

where the last part follows from recursive backward substitution. Thus, the annual consumption

change in period t is simply:

∆Ct = (C1
t + C2

t − C1
t−1 − C2

t−1) = H(ε2t + 2ε1t + ε2t−1). (14)

Regarding income, we assume that the the bi-annual income processes are AR(1), so ∆y2
t =

a∆y1
t + ε2t and ∆y1

t = a∆y2
t−1 + ε1t . Annual income is then yt = y2

t + y1
t . Thus, ∆yt =

y2
t + y1

t − y2
t−1 − y1

t−1 and ∆yt = y2
t − y1

t + 2 y1
t − 2 y2

t−1 + y2
t−1 − y1

t−1 = ∆y2
t + 2∆y1

t + ∆y2
t−1 and

using recursive backwards substitution, we obtain:

∆yt = ∆y2
t + 2∆y1

t + ∆y2
t−1

= (a2∆y2
t−1 + ε2t + aε1t ) + 2(a2∆y1

t−1 + ε1t + aε2t−1) + (a2∆y2
t−2 + ε2t−1 + aε1t−1)

= a2∆yt−1 + [ε2t + (2 + a)ε1t + (1 + 2a)ε2t−1 + aε1t−1].
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We can calculate the MPC out of current and lagged state-specific income as cov(∆Ct,∆yt)
var(∆yt)

and cov(∆Ct,∆yt−1)
var(∆yt−1) respectively. Using equations (14) and (15), it is easy to show that:

var(∆yt) = 6+8a+6a2

1−a2 σ2
ε ,

cov(∆Ct,∆yt) = H(6 + 4a)σ2
ε ,

cov(∆Ct,∆yt−1) = Hσ2
ε .

For a = 0, the MPC out of current income is 1 and the MPC out of lagged income is

1/6. Therefore, time-aggregation produces robust excess sensitivity in the PIH model (see

Working 1960).

Furthermore, both cov(∆Ct,∆yt) and var(∆yt) increase with a. For small values of a, the

covariance increases faster and the current MPC increases in a initially, but could eventually

decrease.

D Solution Methods for the Buffer-Stock Models

The standard buffer-stock model

A closed-form solution of the model does not exist and it must be solved by computational

methods. Following Deaton (1991), the model is first reformulated in terms of cash-on-hand,

Xjt ≡ RSjt−1 + Yjt.20 Given the homogeneity property of the utility function, all variables

can be normalized by permanent income to deal with non-stationarity, as proposed by Carroll

(1997). The first order condition of the problem becomes:

U ′(cjt) = max{U ′(xjt), βREt[(At+1Gs,t+1Nj,t+1)−ρU ′(cj,t+1)]}, (15)

where cjt = Cjt/Pjt and xj,t+1 = (At+1Gs,t+1Nj,t+1)−1R(xjt − cjt) + Vj,t+1.21 Individuals dis-

tinguish aggregate from state-specific shocks and optimize accordingly. We use Euler equation
20The budget constraint becomes Sjt = Xjt − Cjt and the liquidity constraint Cjt ≤ Xjt. Combining the

definition of cash-on-hand and the budget constraint, we can write an expression for the evolution of cash-on-
hand: Xjt+1 = R(Xjt − Cjt) + Yj,t+1.

21A necessary condition for the individual Euler equation to define a contraction mapping is
βREt[(At+1Gs,t+1Nj,t+1)

−ρ] < 1. This is the “impatience” condition common to buffer-stock models which
guarantees that borrowing is part of the unconstrained plan.
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iteration to solve Equation (15) numerically. x is discretized and the income shocks are ap-

proximated by discrete Markov processes following Tauchen (1986). We use 5 points for N ,

V , A and G. Interpolation is used between points in the x grid. The numerical technique de-

livers a consumption function c(x,A,G): normalized consumption as a function of normalized

cash-on-hand and the aggregate and state-specific permanent states. In other words, our opti-

mal policy function for consumption has 25 branches, one for each (A,G) combination of the

discrete approximations of the persistent permanent income shocks.22

The augmented buffer-stock model

In this case the problem is solved using a finite state approximation method. The technique

consists of specifying a finite-state problem that approximates the continuous one we want

to solve. As with the previous technique, all relevant variables are normalized by permanent

income (lower case notation). Also, the problem is reformulated in terms of a variable that

we call voluntary equity, qjt ≡ sjt + (1 − θ)kjt, the equity held in excess of the required down

payment. Unlike sjt with a lower limit which depends on the value of the durable, voluntary

equity has lower limit of 0 (independent of the value of the durable), which greatly simplifies

computation. From the equation for the evolution of assets, we can work out an equation for

the evolution of normalized voluntary equity: qjt = (AtGstNjt)−1{Rqj,t−1 + [ψ(1− dφ)−R(1−
θ)]kj,t−1} − θkj,t + vjt − cjt, where d is 1 if the household changes the durable stock and 0

otherwise. Next, using the homogeneity of degree (1 − ρ) of the utility function, we can write

the Bellman equation of the problem as:

V (qj,t−1, kj,t−1, At, Gst) =

Et−1

{
(AtGstNjt)1−ρ max

qjt,kjt;qjt≥0
U

[
(AtGstNjt)−1

{
Rqj,t−1 + [ψ(1 − dφ) −R(1 − θ)]kj,t−1

}

−θkjt + Vjt − qjt, kjt

]
+ βV (qjt, kjt, At+1, Gs,t+1)

}
. (16)

We replace the continuous state variables, k and q, with the finite sets, K = {k1, . . . , kNk
} and

Q = {q1, . . . , qNq}. Note that the problem has been conveniently formulated in such a way

22More details on how to solve this equation can be found, for example, in the appendix of Ludvigson and
Michaelides (2001).
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that the control variables are next period’s states. The liquidity constraint is implemented by

setting q1 = 0 and qi > 0,∀qi ∈ Q, i > 1. To deal with adjustment cost, we set: d = 0,

if |kjt − (AtGstNjt)−1ψkj,t−1| ≤ κ, and d = 1, if |kjt − (AtGstNjt)−1ψkj,t−1| > κ, where κ =

(kn − kl)/(Nk − 1). The precision of our solution increases as κ falls.

As with the previous technique, all components of the income process are discretized, using

5 points for each income shock. We use 300 points for the q and k grids. While the lower bounds

for the grids are set at 0, the upper bounds are determined by trial and error. We use value

function iteration, which is sped up with an acceleration technique, modified policy function

iteration with S states as described in Judd (1997) to solve the discretized problem. We refer

the interested reader to Luengo-Prado (2006) for more details.

E Time-Aggregation and Income Growth

In this appendix, we discuss how the calibration of income needs to be adjusted when going

from annual to the bi-annual frequencies. For simplicity of exposition, we first show how to deal

with permanent shocks and then we consider transitory shocks.

Permanent shocks

Let us assume that there are no transitory shocks to income and there is only one permanent

shock for simplicity. In particular, income in the second half of period t equals permanent income,

Y 2
t = P 2

t . Permanent income in turn is P 2
t = G2

tP
1
t , with logG1

t = a logG2
t + ε2t . Let logG ≡ g,

and log Y ≡ y. Thus, bi-annual income growth is an AR(1) process: ∆y2
t = a∆y1

t + ε2t . Let us

work out which this implies for annual income growth.

Annual income in t is defined as the sum of income in both halves of year t:

Yt = Y 1
t + Y 2

t = P 1
t + eg

2
tP 1

t

= P 1
t (1 + eg

2
t )

= P 1
t−1e

g1
t +g2

t−1(1 + eg
2
t ),
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where the third line follows from recursive backward substitution. Annual income in t− 1 is:

Yt−1 = Y 1
t−1 + Y 2

t−1 = P 1
t−1(1 + eg

2
t−1)

Then, income growth in period t is:

∆ log Yt ≡ ∆yt = g2
t−1 + g1

t + log(1 + eg
2
t ) − log(1 + eg

2
t−1)

� g2
t−1 + g1

t +
1
2
g2
t − 1

2
g2
t−1

=
1
2
g2
t + g1

t +
1
2
g2
t−1,

where the second part follows from a first order Taylor series approximation. Using recursive

backward substitution twice, we can write the expression above as:

∆yt =
1
2
(a2g2

t−1 + ε2t + aε1t ) + (a2g1
t−1 + ε1t + aε2t−1) +

1
2
(a2g2

t−2 + ε2t−1 + aε1t−1)

= a2∆yt−1 +
[
1
2
ε2t +

(a
2

+ 1
)
ε1t +

(
a+

1
2

)
ε2t−1 +

a

2
ε1t−1

]
= a2∆yt−1 + wt.

Because E[wtwt−k] = 0 for k > 1, ∆yt follows an ARMA(1,1) process. Note that if persistence

is a at the bi-annual level, persistence becomes a2 at the annual level. Also, σ2
w = 0.5(3 + 4a+

3a2)σ2
ε . In our simulations, we abstract from the MA component at the annual frequency. We

assume that income growth is an AR(1) both at the bi-annual and at the annual frequencies. In

other words, if bi-annual income growth is an AR(1) process with persistence a and variance σ2
ε ,

annual income growth is approximated by an AR(1) process with persistence a2 and variance

σ2
w. For example, an annual persistence of 0.07—the average persistence for idiosyncratic state-

level income—corresponds to a bi-annual persistence of 0.265. For that level of persistence, an

annual σw = 0.018, corresponds to a bi-annual σε = 0.0123. Note that if persistence was 0,

σw =
√

3
2σε.

Transitory shocks

Let us now assume that there are only transitory shocks to income. Income in the second half

of period t is: Y 2
t = V 2

t . log V 2
t ≡ v2

t ∼ N(−σ2
v/2 − log(2), σ2

v), where − log(2) guarantees that

the transitory shock at the annual frequency still has mean 1. Income growth at the bi-annual

frequency is simply ∆y2
t = v2

t − v1
t . At the annual frequency, Yt = Y 2

t + Y 1
t = (ev

2
t + ev

1
t ), and
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income growth:

∆yt = log(ev
2
t + ev

1
t ) − log(ev

2
t−1 + ev

1
t−1)

� v2
t + v1

t

2
− v2

t−1 + v1
t−1

2
,

where the second part follows from a first order Taylor approximation. Without time-aggregation

and an annual calibration, ∆yt = ut − ut−1 (where ut is the log of the annual transitory shock).

To obtain the same income growth volatility, we need to set σ2
v = 2σ2

u. For example, for a

standard deviation of the transitory shock at the annual level of 0.07, we should use a standard

deviation of approximately 0.1 at the bi-annual level.

31



References

Abowd, J., and D. Card (1989): “On the Covariance Structure of Earnings and Hours
Changes,” Econometrica, 57, 411–445.

Abraham, A., and N. Pavoni (2005): “The Efficient Allocation of Consumption under Moral
Hazard and Hidden Access to the Credit Market,” Journal of the European Economic Asso-
ciation, 3, 370–381.

Asdrubali, P., B. E. Sørensen, and O. Yosha (1996): “Channels of Interstate Risk Sharing:
United States 1963–1990,” Quarterly Journal of Economics, 111, 1081–1110.

Attanasio, O., and N. Pavoni (2006): “Risk Sharing in Private Information Models with
Asset Accumulation: Explaining the Excess Smoothness of Consumption,” Mimeo, UCL.

Attanasio, O., and G. Weber (1993): “Consumption Growth, the Interest Rate and Aggre-
gation,” Review of Economic Studies, 60, 631–649.

Bernanke, B. S. (1984): “Permanent Income, Liquidity, and Expenditure on Automobiles:
Evidence From Panel Data,” Quarterly Journal of Economics, 99, 587–614.

Blinder, A., and A. Deaton (1985): “The Time Series Consumption Function Revisited,”
Brookings Papers on Economic Activity, 2, 465–521.

Campbell, J. Y., and A. Deaton (1989): “Why is Consumption so Smooth?” Review of
Economic Studies, 56, 357–374.

Carroll, C. D. (1992): “The Buffer-Stock Theory of Saving: Some Macroeconomic Evidence,”
Brookings Papers on Economic Activity, 2, 61–156.

(1997): “Buffer-Stock Saving and the Life Cycle/Permanent Income Hypothesis,” Quar-
terly Journal of Economics, 112, 1–55.

(2000): “‘Risky Habits’ and the Marginal Propensity to Consume out of Permanent
Income,” International Economic Journal, 4, 1–40.

Carroll, C. D., and A. A. Samwick (1997): “The Nature of Precautionary Wealth,” Journal
of Monetary Economics, 40, 41–71.

Deaton, A. (1987): “Life-Cycle Models of Consumption: Is the Evidence Consistent with the
Theory?” in Advances in Econometrics. Fifth World Congress, Vol. II, ed. by Truman F.
Bewley. Cambridge University Press, New York, NY.

(1991): “Saving and Liquidity Constraints,” Econometrica, 59, 1121–1248.

(1992): Understanding Consumption. Oxford University Press, New York, NY.

Dejuan, J. P., and M. J. Luengo-Prado (2006): “Consumption and Aggregate Constraints:
International Evidence,” Oxford Bulletin of Economics and Statistics, 68, 81–99.

Dynan, K. (2000): “Habit Formation in Consumer Preferences: Evidence from Panel Data,”
American Economic Review, 90, 391–406.

32



Flavin, M. (1981): “The Adjustment of Consumption to Changing Expectations about Future
Income,” Journal of Political Economy, 89, 974–1009.

Friedman, M. (1957): A Theory of the Consumption Function. Princeton University Press,
Princeton, NJ.
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Table 1: Parameters of Time Series Process for State-Level Disposable Labor Income.

(1) (2)
Persistence σGs

Alabama 0.16 (0.17) 0.74 (0.09)
Alaska 0.37 (0.16) 4.57 (0.54)
Arizona 0.35 (0.17) 1.31 (0.15)
Arkansas –0.14 (0.17) 1.70 (0.20)
California 0.17 (0.19) 1.17 (0.14)
Colorado 0.41 (0.15) 1.26 (0.15)
Connecticut 0.39 (0.16) 1.56 (0.18)
Delaware –0.04 (0.17) 1.46 (0.17)
Florida 0.09 (0.17) 1.24 (0.15)
Georgia 0.33 (0.16) 0.83 (0.10)
Hawaii 0.20 (0.16) 2.65 (0.31)
Idaho –0.53 (0.15) 2.49 (0.29)
Illinois 0.07 (0.16) 0.92 (0.11)
Indiana –0.06 (0.17) 1.51 (0.18)
Iowa –0.38 (0.15) 3.28 (0.39)
Kansas –0.12 (0.16) 1.25 (0.15)
Kentucky –0.24 (0.15) 1.21 (0.14)
Louisiana 0.50 (0.14) 1.73 (0.20)
Maine –0.16 (0.16) 1.61 (0.19)
Maryland 0.20 (0.17) 1.38 (0.16)
Massachusetts 0.45 (0.15) 1.48 (0.17)
Michigan 0.07 (0.16) 1.78 (0.21)
Minnesota –0.28 (0.15) 1.78 (0.21)
Mississippi 0.02 (0.17) 1.55 (0.18)
Missouri –0.25 (0.16) 1.22 (0.14)
Montana –0.23 (0.16) 2.78 (0.33)
Nebraska –0.49 (0.14) 2.74 (0.32)
Nevada 0.40 (0.15) 1.58 (0.19)
New Hampshire 0.29 (0.16) 2.00 (0.24)
New Jersey 0.18 (0.18) 1.40 (0.17)
New Mexico 0.08 (0.17) 1.37 (0.16)
New York 0.10 (0.17) 1.55 (0.18)
North Carolina –0.06 (0.17) 1.04 (0.12)
North Dakota –0.18 (0.16) 9.28 (1.09)
Ohio –0.28 (0.16) 1.07 (0.13)
Oklahoma 0.26 (0.16) 1.58 (0.19)
Oregon 0.05 (0.17) 1.51 (0.18)
Pennsylvania 0.07 (0.17) 0.94 (0.11)
Rhode Island 0.15 (0.16) 1.83 (0.22)
South Carolina 0.15 (0.16) 1.10 (0.13)
South Dakota –0.30 (0.15) 5.17 (0.61)
Tennessee –0.01 (0.16) 0.97 (0.11)
Texas 0.48 (0.15) 1.28 (0.15)
Utah 0.35 (0.16) 1.20 (0.14)
Vermont 0.03 (0.16) 1.50 (0.18)
Virginia 0.14 (0.16) 1.14 (0.13)
Washington 0.40 (0.15) 1.45 (0.17)
West Virginia 0.15 (0.16) 1.52 (0.18)
Wisconsin –0.08 (0.16) 1.01 (0.12)
Wyoming 0.32 (0.15) 2.62 (0.31)

Notes: The table displays the estimated parameters of a time series model for real disposable labor income. Let yst be the
log of per capita disposable labor income (deflated by the CPI) in state i. The model is: yst = µs + logGst, where µs is a
constant for each state, and logGst = as logGst−1 + σGs εst where εst are i.i.d. normal innovations. as is persistence and
σGs is the standard deviation of the permanent component. The table reports the estimates of as in column (1) and 100
times σGs in column (2). Standard errors in parentheses. Sample 1964–1998.



Table 2: Correlation Matrices of Regressand and Regressors

(0) (1) (2) (3) (4) (5) (6) (7)

(0) ct 1.00 0.12 –0.06 0.02 0.03 0.03 –0.01 0.07
(1) yt 1.00 0.03 0.06 –0.46 0.72 0.60 0.41
(2) Farm Share 1.00 –0.25 –0.03 0.02 0.06 –0.06
(3) Gov’t. Share 1.00 0.02 0.04 –0.01 0.15
(4) Persistence×yt 1.00 –0.50 –0.76 0.19
(5) σ̂Gs×yt 1.00 0.87 0.42
(6) (Farm Share)×yt 1.00 0.08
(7) (Gov’t. Share)×yt 1.00

(0) ct 1.00 0.05 –0.06 0.02 0.07 –0.02 –0.08 0.11
(1) yt−1 1.00 0.03 0.03 –0.45 0.71 0.60 0.40
(2) Farm Share 1.00 –0.25 –0.04 0.04 0.07 –0.06
(3) Gov’t. Share 1.00 –0.02 0.04 0.02 0.07
(4) Persistence×yt−1 1.00 –0.50 –0.76 0.19
(5) σ̂Gs×yt−1 1.00 0.87 0.42
(6) (Farm Share)×yt−1 1.00 0.08
(7) (Gov’t. Share)×yt−1 1.00

Notes: The table shows how the variables entering the regressions correlate across the 50 U.S. states over the years
1970–1998. ct is state s’s nondurable consumption growth (real and per capita) in period t after subtracting state- and
time-specific means. yt is real per capita disposable labor income growth minus the state- and time-specific means. “Farm
Share” is the ratio of employees (including proprietors) in farming to the total number of employees in each state in period
t in the top part of the panel, and for period t− 1 in the bottom part of the panel, with the average for each time period
and for each state subtracted. “Gov’t. Share” is defined similarly. “Persistence” refers, for each state, to the number in
the column (1) in Table 1 minus its mean. Row (4) corresponds to that number interacted with income with time- and
state-specific means subtracted. For row (5) the standard deviations from Table 1 are treated similarly. Farm-share in
row (6) is the farm share as just defined minus its time-specific mean; this is then multiplied by income with time- and
state-specific means subtracted. Gov’t. share in row (7) is treated similarly.
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Table 3: Sensitivity to Current and Lagged Income: Non-Durable Retail Sales

1970-1998

Current MPC Lagged MPC

(1) (2) (3) (4) (5) (6)

yst 0.336∗∗∗ 0.339∗∗∗ 0.333∗∗∗ - - -
(0.049) (0.047) (0.047) - - -

ys,t−1 - - - 0.163∗∗∗ 0.163∗∗∗ 0.171∗∗∗

- - - (0.046) (0.045) (0.042)

Farm Share –0.001 - - –0.001 - -
(0.001) - - (0.001) - -

Gov’t. Share 0.000 - - 0.000 - -
(0.001) - - (0.001) - -

Interaction terms:

Persistence 0.608∗∗∗ 0.588∗∗∗ 0.530∗∗∗ –0.089 –0.087 -
(0.175) (0.173) (0.136) (0.157) (0.155) -

σ̂Gs –0.024 –0.024 –0.026∗ 0.005 0.004 -
(0.023) (0.022) (0.015) (0.018) (0.018) -

Farm share 0.003 0.001 - –0.037∗∗∗ –0.037∗∗∗ –0.032∗∗∗

(0.013) (0.013) - (0.012) (0.012) (0.006)

Gov’t. share –0.008 –0.005 - 0.029∗∗∗ 0.031∗∗∗ 0.030∗∗∗

(0.010) (0.009) - (0.010) (0.009) (0.008)

Notes: Model: cst = µs + vt + αys,t−l + ζ(Xst − X̄.t)(ys,t−l − ȳ.t−l − ȳs. + ȳ..) + ust, where l is 0 for current
and 1 for lagged income. yst is state s’s labor income growth (real and per capita). cst is state s’s nondurable
consumption growth (real and per capita). µs is a cross-sectional fixed effect and vt is a time-fixed effect. X is
one of the variables that may affect the MPC, listed as “interaction terms”—see Table 2 for precise definitions.
Feasible GLS-estimation allowing for the innovation error variance to differ by year and by state. Standard errors
in parentheses. The standard errors for columns (1)-(3), which include generated regressors, are estimated using
parametric Monte Carlo simulation as described in Appendix B. Sample 1970–1998. ∗ ∗ ∗, ∗∗, and ∗ indicate
significance at the 1, 5 and 10% level, respectively.
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Table 4: Benchmark Parameters for Model Simulations

Parameter Annual Frequency Bi-annual frequency

Aggregate growth, µA 0.016 0.008
Aggregate shock persistence, aA 0.420 0.648
Aggregate shock volatility, σA 0.020 0.011
State-level shock persistence, as 0.070 0.265
State-level shock volatility, σGs 0.018 0.012
Permanent idiosinc. shock volatility, σN 0.050 0.041
Transitory idiosinc. shock volatility, σV 0.070 0.099
Interest rate, R− 1 0.020 0.010
Discount rate, 1/β − 1 0.050 0.025
Depreciation rate, ψ − 1 0.085 0.043
Adjustment cost parameter, φ 0.050 0.050
Down payment, θ 0.300 0.300

Notes: The aggregate and state-level income shocks are calibrated according to the income process
estimation of Section 2.1. The other parameters, including the idiosyncratic income shocks, are taken
from previous studies—see the main text for more particulars. Details on how to adjust the income
parameter values to the bi-annual frequency are described in Appendix E.
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Table 5: Sensitivity to Current and Lagged Income in Simulated Data

No time-aggregation Time-aggregation

PIH ROT Buffer Buffer-Durable PIH ROT Buffer Buffer-Durable

No Risk Sharing

Current 1.068 1.000 1.000 0.790 1.042 1.000 0.983 0.756
MPC (0.003) (0.007) (0.006) (0.010)

Lagged 0.000 0.070 0.041 0.096 0.148 0.070 0.192 0.358
MPC (0.048) (0.038) (0.046) (0.033)

50% Risk Sharing

Current 0.534 0.500 0.500 0.395 0.521 0.500 0.491 0.378
MPC (0.001) (0.004) (0.003) (0.005)

Lagged 0.000 0.035 0.028 0.048 0.074 0.035 0.096 0.179
MPC (0.024) (0.019) (0.023) (0.017)

Notes: The rows labeled “current” report the estimated value of the parameter αc from the regression:
∆ logCst = µs + vt + αc∆ log Yst + ust, where Cst and Yst are state nondurable consumption and income
respectively. The columns labeled “lagged” report the estimated value of the parameter αl for lagged income
from the regression ∆ logCst = µs +vt +α

l∆ log Ys,t−1+ust. For the columns “buffer” and “buffer-durable,”
consumption is simulated as described in the text. The simulated data is based on the individual-level income
process ∆ log Yjt = logAt + logGst + logNjt + log Vjt − log Vj,t−1, where logAt and logGst are AR(1)
processes with persistence aA and as respectively, unconditional means µA and 0, and standard deviation
σA and σGs . logNjt and log Vjt are independent and identically distributed with standard deviations σN and
σV , and mean values −σ2

N/2 and −σ2
V /2 respectively. Baseline parameters described in Table 4. “State”-

level consumption and income (Cst, Yst) are averages over 3,000 individuals in each “state.” There are
10 “states” and 50 periods. We report average MPCs for 20 independent simulations. Average estimated
standard errors in parentheses. For the columns labeled “PIH” the numbers are calculated for a log-linear
approximation of a representative-agent PIH-model, with the interest rate equal to the discount rate and the
representative agent receiving the aggregate income process. In the case with time-aggregation, agents are
assumed to make decisions bi-annually but the data is transformed to the annual frequency before running
the regressions. All parameters, including income parameters, are adjusted to a bi-annual frequency in this
case.
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