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This paper explores the equilibrium properties of boundedly rational heterogeneous
agents under adaptive learning. In a modified cobweb model with a Stackelberg
framework, there is an asymmetric information diffusion process from leading to
following firms. It turns out that the conditions for at least one learnable equilibrium are
similar to those under homogeneous expectations. However, the introduction of
information diffusion leads to the possibility of multiple equilibria and can expand the
parameter space of potential learnable equilibria. In addition, the inability to correctly
interpret expectations will cause a “boomerang effect” on the forecasts and forecast
efficiency of the leading firms. The leading firms’ mean square forecast error can
be larger than that of following firms if the proportion of following firms is sufficiently
large.
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1. INTRODUCTION

The rational expectations hypothesis [Muth (1961); Lucas (1972, 1973)] has
revolutionized how economists conceptualize and model economic phenomena.
Currently, rational expectations (RE) represents a key component in the study
of macroeconomic problems [Frydman and Phelps (1983); Haltiwanger and
Waldman (1985)]. Under RE, agents are assumed to act as if they can take
conditional (mathematical) expectations of all relevant variables. However, for all
its analytical traction, it is also well known that RE rests on a strong assumption.
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Sargent (1993), for example, points out that agents with RE are even more
sophisticated than the economist who sets up the economic model.

With this theoretical and empirical challenge in mind, one line of inquiry
has been to determine whether a rational expectations equilibrium (REE) can
be achieved under the assumption that agents form expectations using less
sophisticated mechanisms [Bray (1982); Bray and Savin (1986); Evans (1983);
Evans and Honkapohja (2001)]. This line of inquiry allows agents to achieve
the REE within the context of a stochastic (updating) process that is typically
represented via adaptive learning. Agents do not initially obtain the REE, but they
attempt to learn the stochastic process by updating their forecasts (expectations)
over time as new information becomes available.

In more technical terms, adaptive learning is used so that agents update
parameters of a forecasting rule—perceived law of motion (PLM)—associated
with the stochastic process of the variable in question to learn an REE. This
process requires a condition establishing convergence to the REE—the E-stability
condition. The E-stability condition determines the stability of the equilibrium
in which the PLM parameters adjust to the implied actual law of motion (ALM)
parameters.

Evans (1989) and Evans and Honkapohja (1992) show that the mapping from
the PLM to the ALM is generally consistent with the convergence to REE under
least squares learning. This correspondence is called the E-stability principle.1

This principle also possesses additional attributes. If the equilibrium is E-stable,
then the RE method may be an appropriate technique for solving long run
equilibria. Moreover, E-stability conditions can be an important selection criteria
(i.e., determining stable solutions) when a model has multiple equilibria.

In this paper, we extend adaptive learning methods described earlier to a scenario
involving heterogeneous information levels and social interaction. Prior research
linking adaptive learning procedures to heterogeneous information levels has not
made use of social interaction. This previous research generally assumes that
agents forecast independently and solely gather their own information.

For example, Evans and Honkapohja (1996) relax the assumption of homo-
geneity and allow for N different groups of agents who may form different expecta-
tions. Agents are allowed to have different parameter estimates in the same
structural forecasting rule. They use a general cobweb-type model and show
that the E-stability condition remains the same as in the case of a homogeneous
expectations learning model. In addition, Giannitsarou (2003) allows hetero-
geneous adaptive learning in an economy with a homogeneous structure. She finds
that different types of heterogeneity may result in different stability conditions
compared to homogeneous learning.

Others have relaxed the representative agent assumption in the learning process
[Honkapohja and Mitra (2006)]. They find that such structural heterogeneity alters
E-stability conditions in different macroeconomic models. Finally, Guse (2005)
allows heterogeneity in the forecasting models used to form expectations—in
a model with two equilibria. He finds that the E-stability conditions of each
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equilibrium are determined by the proportion of agents using each forecasting
model. Furthermore, the two equilibria “exchange” stability at the smallest
proportion of heterogeneity where the mean-square forecast error (MSE) of the
two forecasting models are equal.

Currently, there is no study analyzing how agents’ interactions would affect
model equilibria under adaptive learning. Although standard adaptive learning
models provide important extensions of the RE framework, the assumption of agent
forecast independence can be relaxed. Information diffusion (or interaction) among
different groups of agents could occur especially when people do not interpret the
public information in an identical manner [Kandel and Zilberfarb (1999)]. Carroll
(2003) finds, for example, statistical evidence of information diffusion where
professional inflation forecasts Granger-cause household forecast accuracy.2

Against this theoretical and empirical background, we present a modified
Muthian cobweb model [Muth (1961)] to allow for both information heterogeneity
and information diffusion. We assume a Stackelberg framework, where there
are two types of agents—first and second moving firms. The first-moving firms
(leading firms) make the initial forecasts of an aggregate price level according to
exogenous information in a market while second-moving firms (following firms)
form their forecasts based on the forecasts made by the leading firms. Although the
following firms obtain the leading firms’ forecasts, they are unable to accurately
interpret the content of information because there is some miscommunication
between firms. Thus, observational errors due to misinterpretation of leading
firms’ expectations would naturally occur in the information acquisition process.3

With the assumption of social/information interactions, we first examine
conditions for a unique (real) equilibrium in our cobweb model. In contrast to
a simple cobweb model (without social interaction), which has a unique REE,
there may exist multiple mixed expectations equilibria (MEE) in the “interactive”
cobweb model.4 We show that if the variance of the observational error is not
sufficiently large, then there exists a unique MEE for the parameter space that
Evans and Honkapohja (2001) show to be stable under adaptive learning. However,
if the variance of the observational error is large, then there may exist three MEE.

When there is a unique equilibrium the E-stability conditions for the
MEE—where there is information diffusion—are identical to the conditions under
no information diffusion (homogeneous expectations). When there exists three
equilibria, the “high” and “low” solutions are E-stable, whereas the “middle”
solution is not E-stable for the E-stable parameter space discussed in Evans and
Honkapohja (2001). Interestingly, it turns out that the “low” equilibrium can be
E-stable outside of this parameter space.

Next, we find that the degree of information diffusion affects the stochastic
(equilibrium) process of the aggregate price level. We argue that the inability to
fully share information and the inability to observe observational errors by the
leading firms will cause a “boomerang effect” on the leading firm’s forecasts and
their forecast efficiency. As a result, the leading firms learn a stochastic process
different than the REE due to the following firms’ misinterpretation(s). Not only is
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the REE unobtainable, but the MSE for the leading firms is larger than it would be
under the REE. In addition to these findings, we also examine the relation between
the size of the boomerang effect and the proportion of leading and following firms
in the model. We show that, under certain conditions, the leading firms’ MSE can
be even larger than that of following firms if the proportion of following firms is
sufficiently large.

This paper is organized as follows. Section 2 introduces the cobweb model,
which includes interactions between leading and following firms. In this section,
we also show the conditions of uniqueness and multiplicity of MEE. In Section 3,
we study the E-stability conditions of the model. Section 4 demonstrates the
boomerang effects, and Section 5 concludes.

2. A SIMPLE INTERACTIVE COBWEB MODEL

The cobweb model has been used extensively in the macroeconomic and learning
literature [see Muth (1961); Arifovic (1994); Evans and Honkapohja (2001);
Branch and McGough (Forthcoming)]. It is assumed that there are n firms in
a competitive market producing a homogeneous product. The firms produce an
optimal quantity of their good to maximize their expected profits in accordance
with their (rational or nonrational) expectations of the market price in the next
period.

The reduced form of the model can be presented as follows:5

yt = βE∗
t−1yt + γ xt−1 + ηt , (1)

where yt is the price level at time t , E∗
t−1yt is the expectation (not necessarily

rational) of yt formed at the end of time t − 1, and ηt ∼ iid(0, σ 2
η ). xt−1 is a

exogenous observable following a stationary AR(p) process driven by a white
noise shock. We assume Ext = 0 and Ex2

t = σ 2
x . Under the standard cobweb

model with a single good, it must be that β < 0. However, there exist variants of
the cobweb model such that β ∈ (−∞,∞).6

We modify the cobweb model into a Stackelberg setup where it contains two
types of firms. Assume that there is a continuum of firms located on the unit interval
[0, 1] of which a proportion of 1−µ, where µ ∈ [0, 1), are first-moving (or leading)
firms who form expectations of the market price based on the information (xt−1)

observed in the market.
Following the adaptive learning literature, firms will act like econometricians

and forecast yt by running least-squares regressions of yt based on their past
information. Assume that the leading firms (Type-L firms) form expectations
using a forecasting model consistent with the form of the minimum state variable
(MSV) REE under homogeneous expectations.7 The PLM for the Type-L firms
and their expectations of yt are given as

yt = bxt−1 + εt ,

ye
L,t = bxt−1,

(2)

where ye
L,t presents the expectations of yt for the Type-L firms at time t − 1.
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The remaining µ firms are assumed to be second-moving (following) firms who
observe the Type-L firms’ expectations to form their expectations of market price.
However, the following (Type-F) firms may interpret (or even misinterpret) the
Type-L firms’ expectations differently among themselves or may not be able to
obtain the exact information from the Type-L firms. We impose a distribution of
observational errors, vt−1, which indicates the degree of misinterpretation of other
firms’ actions.8 The PLM for the Type-F firms and their expectations of yt are

yt = c
(
ye

L,t + vt−1
) + εt ,

ye
F,t = c (bxt−1 + vt−1) ,

(3)

where ye
F,t presents the expectations of yt for the Type-F firms at time t − 1 and

vt−1 ∼ iid(0, σ 2
v ) represents the observational errors which are uncorrelated with

εt and xt−1. Under this setup, we assume that vt−1 is unobservable by the Type-L
firms and the Type-F firms are either unable or unwilling to observe ye

L,t and vt−1

separately.
In equation (3), we also assume that the objective of the Type-F firms is

to minimize their MSE by choosing c. If Type-F firms instead are assumed
to completely adopt the noisy information from the Type-L firms as their own
expectations (by setting c = 1 a priori), then Type-F firms’ MSE would not be
minimized based on their PLM in equation (3). However, Type-L firms would
obtain the REE coefficient of b. Given that Type-F firms cannot disentangle
Type-L firms’ expectations (ye

L,t ) from the observational errors or excess noise
(vt−1), Type-F firms would find that their MSE can be minimized when c is not
equal to one.9

Furthermore, the assumption that vt−1 is not observed separately by the Type-F
firms is crucial in our analysis. If the Type-F agents were able to form expectations
using an alternative PLM:

yt = d1y
e
L,t + d2vt−1 + εt ,

then they would choose to ignore the unimportant noise, vt−1 (d2 = 0) and fully use
the expectations of the Type-F firms (d1 = 1). This case would become equivalent
to the cobweb model under homogeneous expectations where all firms are Type-L.

Next, based on the proportions of the Type-L and Type-F firms, the average
market price expectation is

E∗
t−1yt = µ[c(bxt−1 + vt−1)] + (1 − µ)bxt−1.

The ALM is obtained by substituting average expectations of next period’s market
price into equation (1):

yt = {βb[µ(c − 1) + 1] + γ }xt−1 + βµcvt−1 + ηt

= (ξb + ξcb)xt−1 + ξcvt−1 + ηt , (4)

where ξb ≡ β(1 − µ)b + γ and ξc ≡ βµc.
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Note that the form of each group’s PLM is inconsistent with the ALM.
However, following Evans and Honkapohja (2001), one can obtain a projected
ALM associated with a particular PLM. The projected ALM is an ALM projected
onto the same class of a particular PLM. It also represents “the best description
of the process within the permitted class of PLMs considered” [see Evans and
Honkapohja (2001, p. 322)]. We define the projected ALM in our model as follows:

DEFINITION 1. For Type-j firms, where j ∈ {L,F }, the Type-j projected
ALM is Tj (φ)′zj,t−1 + εt , where Tj (φ)′ is obtained from the linear projection of
equation (4) on zj,t−1, zj,t−1 is the information used in PLMj , and φ is a vector
representing the parameters used in each PLM.

The projected ALMs are obtained by computing the following linear
projections:

E{xt−1[(ξb + ξcb)xt−1 + ξcvt−1 + ηt − Tbxt−1]} = 0

E{(bxt−1 + vt−1)[(ξb + ξcb)xt−1 + ξcvt−1 + ηt − Tc(bxt−1 + vt−1)]} = 0,

where
yt = Tbxt−1 + εt ,

is the projected ALM associated with the PLM of the Type-L firms and

yt = Tc (bxt−1 + vt−1) + εt ,

is the projected ALM associated with the PLM of the Type-F firms.
Due to the above linear projections, the forecasts associated with each PLM

must satisfy the least-squares orthogonality condition where the regressors
are uncorrelated with the forecast errors. This projection gives the following
T-mapping from the two PLMs to their associated projected ALMs:

T

(
b

c

)
=

(
Tb(b, c)

Tc(b, c)

)
=

⎛
⎜⎝

ξb + ξcb

ξc + bσ 2
x

b2σ 2
x + σ 2

v

ξb

⎞
⎟⎠

=

⎛
⎜⎝

[(1 − µ) + µc]βb + γ

µcβ + bσ 2
x

b2σ 2
x + σ 2

v

((1 − µ)βb + γ )

⎞
⎟⎠ . (5)

For a model where agents have a choice of using one of several forecasting
models, Guse (2005, 2006) refers to a resulting stochastic equilibrium defined by
the ALM and a fixed point of the T-map as a “mixed expectations equilibrium”
(MEE).10 In our model, a MEE is a stochastic process following the (unprojected)
ALM:

yt = {βb̄[µ(c̄ − 1) + 1] + γ }xt−1 + βµc̄vt−1 + ηt , (6)
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where (
b̄

c̄

)
= T

(
b̄

c̄

)
.

Similar to a REE, the coefficients in a MEE are such that each PLM is consistent
with its associated projected ALM. We will refer to such an equilibrium as q̄ =
(b̄, c̄), which implies the stochastic process in equation (6) given b̄ and c̄. The
MEE coefficients are the following in this model:11

b̄ = γ

1 − β(1 − µ + µc̄)
(7)

c̄ = b̄2a

b̄2a + (1 − βµ)
,

where

a = σ 2
x

σ 2
v

.

One can think of a as a ratio of noise in important information over noise in
“unimportant” information. Note that as a → ∞, the MEE value for c̄ → 1 and
the MEE value of b̄ → γ

1−β
, which is equal to the REE value of b.

Although firms misspecify their forecasting models, the MEE are optimal
relative to the restricted information set used by the firms. Due to the orthogonality
condition, firms cannot detect a misspecification unless they step outside of their
forecasting models. There is some concern about MEE because variables in the
ALM not included in a forecast will be correlated with the forecast errors, making it
possible to easily detect misspecification. However, the Type-L firms will be unable
to detect their misspecification, as they do not observe the variable vt−1. Therefore,
the forecast error correlation problem should not be a concern in our model.12

From solution (7), we observe that the functions representing b̄ and c̄ are
nonlinear (cubics) and there may exist multiple equilibria for a open set of
parameters when σ 2

v > 0. The conditions for a unique real MEE and multiple
real MEE when β ∈ (−∞, 1

µ
) are given in Proposition 1:13

PROPOSITION 1. Define amax = 27µ2(8−7µ)

γ 2(8+µ)3 and amin = (1−µ)µ2

4γ 2 .

1. A unique real MEE exists if β < 8
8+µ

.

2. For β ∈ ( 8
8+µ

, 1
µ
) there are 3 cases to consider for multiple equilibria:

(a) If a > amax, then there exists a unique real MEE.
(b) If a ∈ (amin, amax), there exists a unique real MEE if β /∈ (β1, β2) and multiple

(3) real MEE if β ∈ (β1, β2) where β1 ∈ ( 8
8+µ

, 1), β2 ∈ ( 8
8+µ

, 1), and β2 > β1.
(c) If a ∈ (0, amin), there exists a unique real MEE if β /∈ (β1, β2) and multiple (3)

real MEE if β ∈ (β1, β2) where β1 ∈ ( 8
8+µ

, 1) and β2 ∈ (1, min( 1
µ
, 1

1−µ
)).

The proof is given in Appendix A. Figure 1 shows two functions, β1(a)

and β2(a), that can be generated using the Implicit Function Theorem where
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FIGURE 1. Multiple real MEE exist within the shaded region for a given µ and γ .

β1(a)< β2(a) for all a ∈ (0, amax). β1 and β2 in Proposition 1 are defined by these
functions for a given a where β1(a)∈ ( 8

8+µ
, 1) for a ∈ (0, amax), β2(a)∈ (β1(a), 1)

for a ∈ (amin, amax), and β2(a)∈ [1, min( 1
µ
, 1

1−µ
)) for a ∈ (0, amin]. If β < 1

µ
,

then, for a given µ and γ , there exists multiple real MEE only when (a, β) is
inside of the shaded region defined by β1(a) and β2(a) in Figure 1.

Under our setup here, the standard cobweb model with β < 0 will continue
to have a unique solution for any a ≥ 0. However, the stochastic process will
be different than that of an REE as discussed later. Interestingly, we note that
in a cobweb model where β ∈ ( 8

8+µ
, 1

µ
), multiple equilibria can exist14 if σ 2

v is
sufficiently large so that a ∈ (0, amax). For β ∈ (−∞, 1

µ
), if there are multiple

equilibria, then we refer to each equilibrium as q̄i = (b̄i , c̄i ), where 0 < c̄1 <

c̄2 < c̄3 < 1 and b̄i is obtained from (7) given c̄i .
Next, we explore some important properties of the MEE,which will prove useful

when discussing the learnability of the MEE. The properties are expressed in the
following lemma:

LEMMA 1. b̄ and c̄ have the following properties:

1. c̄ ∈ (0, 1] if β < 1
µ
, σ 2

x > 0, and σ 2
v is finite.

2. sign(b̄) = sign(γ ) if β < 1.
3. (a) If c̄ is unique, then c̄ is monotonically increasing in β for β < 1, monotonically

decreasing in β for β ∈ (1, β̃) for some β̃ ∈ (1, 1
µ
), and monotonically increasing

in β for β ∈ (β̃, 1
µ
).

(b) If there exists multiple MEE, then
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i c̄1 is monotonically increasing in β for β ∈ (β1, β2),

ii c̄2 is monotonically decreasing in β for β ∈ (β1, β2), and
iii c̄3 is monotonically increasing in β for β < 1, monotonically decreasing in

β for β ∈ (1, β̃) for some β̃ ∈ (1, 1
µ
), and monotonically increasing in β for

β ∈ (β̃, 1
µ
).

The proof is given in Appendix C. Part 1 of Lemma 1 states that the Type-F
firms will always use some information from the Type-L firms in equilibrium. If
σ 2

v = 0, then the Type-F firms have the same information as the Type-L firms and
thus the equilibrium level of c will be c̄ = 1. As σ 2

v increases, the information
from the Type-L firms becomes less useful to the Type-F firms and thus c̄ → 0 as
σ 2

v → ∞. Part 2 of the Lemma states that the sign of b̄ must be consistent with
the sign of γ for β < 1. However, if β > 1 this is not always the case. We show
below that under our model, an MEE where sign(b̄) 	= sign(γ ) is never stable
under learning.

Part 3 of the Lemma states that for a unique solution, information from the
Type-L firms is more useful for larger values of β (for a fixed a > 0) when β < 1.
From equation (4), we see that the effect from the observational error on the ALM
is βµc̄vt−1. For the standard cobweb model with β < 0, there is a negative feedback
effect and prices will respond in the opposite direction of the observational error,
vt−1. As a result, as β takes larger negative values (for a fixed σ 2

v ) information
from the Type-L firms becomes less informative and thus c̄ will decrease. Under
the case of a positive expectational feedback, the price will move in the same
direction as the observational error. Consequently, the uninformative vt−1 feeds
into the ALM to actually become “important” information as β increases, thereby
causing c̄ to increase. When β = 1, the response to xt−1 is infinite (if c̄ is unique)
and, therefore, the vt−1 shock is relatively unimportant. In this case, agents will
fully use the information from the Type-L agents and thus c → 1 as β → 1. For
multiple equilibria, the same intuition should follow; however, we see that the
equilibrium c̄2 moves in the opposite direction of β. We show later that this
nonintuitive equilibrium is actually not E-stable; firms will not coordinate to this
MEE under learning.

3. EXPECTATIONAL STABILITY OF THE MEE

Evans and Honkapohja (2001) discuss the E-stability condition of the cobweb
model under homogeneous expectations. Assuming that all agents have the
forecasting rules as equation (2), they show that the REE is E-stable if β < 1.
Evans and Honkapohja (1996) relax the assumption of homogeneous expectations
learning, allowing for N different groups of agents forming different expectations.
Based on this framework, they show that the condition for E-stability is the same
as that for the case of homogeneous expectations learning.

In this section, we explore E-stability conditions in a cobweb model allowing
for interactions among agents. It turns out that if there exists a unique real MEE
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for some β ∈ (−∞, 1), then this MEE is E-stable. This result is equivalent to the
E-stability condition of β < 1 under the cases of homogeneous and heterogeneous
expectations learning discussed in Evans and Honkapohja (1996, 2001). Recall
that there may exist multiple MEE according to solution (7). “High” and “low”
MEE are E-stable and the “middle” MEE is E-unstable if β < 1. Interestingly,
if there exists multiple equilibria for some β ∈ (1, min( 1

µ
, 1

1−µ
)), then the “low”

MEE is E-stable while the “middle” and “high” MEE are E-unstable. Our current
setup of heterogeneity thus expands the E-stability space of the specific model.
Finally, we conclude that there does not exist an E-stable MEE for β > 2. The
results here generalize the previous E-stability results of Evans and Honkapohja
(2001) to a Stackelberg type setting.

To show the E-stability condition, consider the following ordinary differential
equation (ODE):

dφ

dτ
= T (φ) − φ,

where: T is the mapping from the PLM, φ, to the implied ALM, T (φ) and τ denotes
“notional” or “artificial” time. In this case, T (φ) is represented by equation (5)

and:

φ =
(

b

c

)
.

Evans and Honkapohja (2001) define an equilibrium (stochastic process defined
by the ALM and a fixed point of the ODE) to be E-stable if the ODE is stable
when evaluated at the equilibrium values.

We present the E-stability conditions in the following proposition:

PROPOSITION 2. E-stability conditions for the above interactive cobweb
model:

1. If a > amax, then the unique MEE is E-stable if β < 1 and E-unstable for all β > 1.
2. If a ∈ (amin, amax), then the unique MEE is E-stable for all β ∈ (−∞, β1) and all

β ∈ (β2, 1) and is E-unstable for all β > 1,q̄1 and q̄3 are E-stable for all β ∈ (β1, β2),

and q̄2 is E-unstable for all β ∈ (β1, β2).
3. If a ∈ (0, amin), then the unique MEE is E-stable for all β ∈ (−∞, β1) and E-unstable

for all β > β2, q̄1 is E-stable for all β ∈ (β1, β2), q̄2 is E-unstable for all β ∈ (β1, β2),

and q̄3 is E-stable for all β ∈ (β1, 1) and E-unstable for all β ∈ (1, β2).

The proof is given in Appendix D. Similar to Figure 1, we illustrate the
conditions of uniqueness, multiplicity, and E-stability in Figure 2, which plots
β1(a) and β2(a) in (a, β) space. Region I represents the area where there does
not exist E-stable MEE. As shown in Proposition 1, regions II and III represent
the areas for the existence of multiple real MEE. However, not all multiple real
MEE are E-stable. If β < 1/µ, then, for a given µ and γ, q̄1 is the only E-stable
MEE in both regions, while q̄3 is E-stable in region III but E-unstable in region II.
Moreover, q̄2 is E-unstable in both regions. In Figure 2, we see that region IV is
the area where the unique MEE is E-stable.
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FIGURE 2. Regions of uniqueness, multiplicity, and E-stability for a given µ and γ .

To illustrate the expansion of the E-stability region under heterogeneity, we
provide a simulation of 15,000 periods of the model (1) with the reduced form
parameters: β = 1.05 > 1, γ = 2, and µ= 0.5. In this simulation, the observable
follows an AR(1) process such that

xt = 0.9xt−1 + noise,

where σ 2
x = 4. vt−1 and ηt are assumed to be white noise processes such that

σ 2
v = 800 and σ 2

η = 1.15 As the E-stability condition is a concept of the local
stability, we assume that the Type-L and Type-F firms obtain the initial values
close to the E-stable MEE, (b0 = 6.13 and c0 = 0.28).

The objective of the simulation is to show that both Type-L and Type-F firms
are able to learn a MEE in the case of β = 1.05 > 1. For this simulation, we assume
that in each period, agents will estimate the parameter in their PLM using standard
recursive least squares (RLS):

φj,t = φj,t−1 + λtRj,t−1zj,t−1(yt − z′
j,t−1φj,t−1),

Rj,t = Rj,t−1 + λt (zj,t−1z
′
j,t−1 − Rj,t−1),

where φL,t = bt , φF,t = ct , zL,t−1 = xt−1, zF,t−1 = (bt−1xt−1+vt−1), Rj,t represents
the estimated second moment of zj,t−1, and λt is a sequence of nonincreasing
“gains.”16
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FIGURE 3. Simulations for Type-L and Type-F Firms’ PLM’s When β > 1.

Figure 3 demonstrates the learning process for the Type-L (upper panel) and the
Type-F (lower panel) firms given β = 1.05. The Y axis represents the estimated
parameter value of a firm’s PLM and the X axis represents the real-time learning
periods. Figure 3 shows that firms adjust their PLM parameters in the first 5,000
periods. After period 5,000, the parameters become more stable and convergent.
When t = 15,000, Type-L and Type-F firms’ parameters converge to b = 6.1000
and c = 0.2816, respectively, which are close to the solutions of q̄1. This simulation
demonstrates that q̄1 is locally stable under least-squares learning.17

Recall that Evans and Honkapohja (2001) show that the unique REE is E-stable
if β < 1 in the cobweb model with homogeneous expectations. In this model
under the process of information diffusion, we find that β < 1 is still an important
condition for obtaining E-stable solution(s). We present the following corollary:

COROLLARY 1. β < 1, then there exists at least one E-stable MEE under the
above setup of information diffusion.

The proof comes directly from Proposition 2. Proposition 2 shows that the
unique MEE is E-stable when β < 1. Parts 2 and 3 of Proposition 2 then point out
that q̄1 and q̄3 are E-stable if β < 1. Thus, we conclude that there exists at least
one E-stable MEE—either a unique or multiple MEE—when β < 1.

Proposition 2 also shows that if σ 2
v is sufficiently large [a ∈ (0, amin)], then

the “region” of at least one E-stable MEE is expanded to be β < β2 for β2 ∈
(1, 2). Previous work on heterogeneous expectations [Giannitsarou (2003) and
Honkapohja and Mitra (2006)] has shown general results where the E-stability
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space is contracted due to heterogeneity, but to our knowledge, there has not been
a general result where heterogeneity can expand the E-stability space of a specific
model. Under our setup, the upper bound on the region of E-stability depends on
µ. In other words, a sufficient condition for E-instability is β > 2 as shown in the
following corollary:

COROLLARY 2. If β > 2, then there does not exist an E-stable MEE.

The proof is straightforward. As β2 ∈ ( 8
8+µ

, min( 1
µ
, 1

1−µ
)), the maximum value

of β2 is obtained when µ= 1
2 so that max(β2)= 2. Because no MEE is E-stable

when β > β2, then it must always be the case that no MEE is E-stable when
β > 2 = max(β2).

There seems to be a relationship between the sign of the MEE value of b̄ and the
E-stability of an MEE. Suppose that xt−1 is a shock to productivity and therefore,
under standard economic theory, it must be that γ < 0. Under homogeneous
expectations (µ= 0), sign(b)= sign(γ ) for β < 1 and sign(b) 	= sign(γ ) for β > 1.
When β > 1, under RE, agents unreasonably produce less output when their
productivity is increased and more when their productivity is decreased. However,
this nonsensical equilibrium is not E-stable and thus not stable under learning.
We show that these nonsensical equilibria continue to be E-unstable under the
interactive cobweb model in the following corollary:

COROLLARY 3. There does not exist an E-stable MEE where sign(b̄) 	=
sign(γ ).

The proof is given in Appendix E. For a ∈ (0, amin) and β ∈ (1, β2), c̄1 is
small enough such that sign(b̄1)= sign(γ ). Therefore, under an adaptive learning
rule, agents will only learn a stochastic process such that their response to
an xt−1 shock will be consistent with economic theory. As all MEE where
sign(b̄) 	= sign(γ ) are E-unstable, we can think of this as a sufficient condition for
E-instability.

Recall another nonintuitive result earlier where c̄2 was monotonically decreasing
in β meaning that as vt−1 became more “informative,” the Type-F firms would
make less use of it. We have also shown that c̄3 or the unique MEE c̄ is also
decreasing in β for β ∈ (1, β̃) where β̃ ∈ (1, 1

µ
). As these MEE are always

E-unstable, another sufficient condition for E-instability for this model is that
c̄ is decreasing in β.

4. THE BOOMERANG EFFECT

In this section, we discuss the comparative statics of an equilibrium (MEE)
and its forecast accuracy (i.e., mean-squared forecast error) with respect to the
observational errors (vt−1). The inability to fully share information and the inability
to observe vt−1 by the Type-L firms will cause a “boomerang effect” on the
forecasts and forecast efficiency of the Type-L firms. First, as c̄ ∈ (0, 1) for σ 2

v > 0,
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the temporary equilibrium:

yt = {βbt−1[µ(ct−1 − 1) + 1] + γ}xt−1 + βµct−1vt−1 + ηt ,

will typically be different than it would be under the case of homogeneous
expectations (i.e., when µ= 0). Therefore, if σ 2

v > 0, then the Type-L firms will
eventually learn a stochastic equilibrium such that they will respond differently to
a xt−1 shock than under the REE with homogenous expectations. We refer to this
as the Boomerang Effect on Expectations.

Second, the observational errors will enter the ALM, but as the Type-L firms
are unable to observe this shock, it becomes additional noise. Therefore, the
observational error has a negative effect on forecast accuracy. In equilibrium,
MSE is higher for the Type-L firms than under the REE since the observational
error introduces excess volatility. We refer to this as the Boomerang Effect on the
MSE.

Finally, we examine the relationship between the boomerang effect on the MSE
and the proportion of Type-F firms in the model, µ. We find that if µ is sufficiently
large, then the Type-L firms’ MSE can actually be larger than that of Type-F firms.

4.1. The Boomerang Effect on Expectations

In MEE (7) and Lemma 1, the observational error, vt−1, plays a very important
role in the model. How much the Type-F firms use the observed expectations
from the Type-L firms depends on how accurately the Type-F firms interpret the
Type-L firms’ expectations. This accuracy is represented by the variance of the
observational error, σ 2

v . According to the previous discussion of part 1 of Lemma 1,
we see that if β ∈ (−∞, 1

µ
), then every real c̄ is between zero and one depending

on the size of σ 2
v . If the Type-F firms fully understand and make use of the Type-L

firms’ expectations (i.e., σ 2
v = 0), then c̄ = 1. It implies that both types of firms’

expectations become homogeneous and therefore they are able to achieve the REE.
Next, consider the case of σ 2

v > 0, where the Type-F firms misinterpret the
Type-L firms’ expectations. Although the Type-L firms use the existing exogenous
observable, xt−1, to form their expectations, the ex-post observational error created
by the Type-F firms eventually confounds the Type-L firms. Instead, the Type-L
firms obtain the MEE b̄ rather than the REE b̄REE (where µ= 0 or σ 2

v = 0). This
boomerang effect on expectations is summarized in the following proposition:

PROPOSITION 3 (Boomerang Effect on Expectations). For a finite σ 2
v , the

E-stable MEE |b̄| ∈ (
|γ |

1−β(1−µ)
,

|γ |
1−β

) for β ∈ [0, 1) and |b̄| ∈ (
|γ |

1−β
,

|γ |
1−β(1−µ)

) for
β ∈ (−∞, 0).

The proof of this proposition is straightforward. According to Lemma 1,
c̄ ∈ (0, 1] for all finite σ 2

v ; therefore, from equation (7), we see that
|b̄| ∈ (

|γ |
1−β(1−µ)

,
|γ |

1−β
) for β ∈ (0, 1) and |b̄| ∈ (

|γ |
1−β

,
|γ |

1−β(1−µ)
) if β is negative.

When expectations are not involved in the model (β = 0), it turns out that b̄ = γ .



LEARNING FROM THE EXPECTATIONS OF OTHERS 359

FIGURE 4. The Region of the Boomerang Effect on the MEE.

The shaded region in Figure 4 shows possible values of b̄ for a given β when
γ and µ are fixed. The lower boundary for β < 0 and the upper boundary for
β > 0 represent the REE of b when the Type-F firms accurately observe the
forecasts from the Type-L firms (i.e., σ 2

v = 0 and c = 1), whereas other boundaries
represent a case where the Type-F firms do not use any of the forecasts given by
the Type-L firms (i.e., σ 2

v → ∞ and c → 0). Any MEE b̄ will be located within
the shaded region and determined by a > 0. If the Type-F firms accurately observe
the expectations of the Type-L firms (σ 2

v = 0), the Type-L firms obtain the E-stable
REE (b̄REE). However, if the Type-F firms are unable to perfectly observe the
Type-L expectations (a finite σ 2

v ), then b̄ for the Type-L firms would move to
the inside of the shaded region. This result represents the Type-L firms’ failure to
obtain the REE when the Type-F firms misinterpret the forecasts of the Type-L
firms under the process of information diffusion. Finally, note from earlier that
b̄ can take on positive or negative values for β > 1 and we do not generally
demonstrate a relation between the MEE and the REE. However, one can typically
say that b̄ 	= b̄REE meaning that the Type-L agents are still unable to obtain the
REE for β > 1.

To illustrate that the Type-L firms fail to obtain the REE with finite values
of σ 2

v we provide a simulation that is similar to Figure 3. We use the following
reduced form parameters: β = −0.5 < 1, γ = 2, µ= 0.5, σ 2

x = 4, σ 2
v = 25 and

σ 2
η = 1.18 Assume that the Type-L and Type-F firms initially obtain the REE,

(b0 = 4
3 and c0 = 1).19 In Figure 5, under the process of information diffusion

with a finite misinterpretation error variance (generated by the Type-F firms),
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FIGURE 5. Simulations for Type-L and Type-F Firms’ PLMs.

the parameters for both firms’ PLM’s do not converge to the REE.20 Part 1
of Lemma 1 is shown numerically in the lower panel of Figure 5. With
σ 2

v = 25, the Type-F firms make partial use of the expectations formed by the
Type-L firm. The result is the Type-F firms’ PLM parameter, c, converges to
MEE c̄ = 0.23 ∈ [0, 1].

More important, the upper panel of Figure 5 describes the boomerang effect
on the Type-L firms’ forecasts. Although the Type-L firms are initially at the
REE and obtain exogenous observables, xt−1, to make forecasts, they fail to stay
at the REE and instead eventually learn the MEE when they interact with the
Type-F firm (with a finite σ 2

v ). For time periods between one to 150, the value of
b fluctuates and gradually adjusts. After period 1,000, the parameter b becomes
more stable and converges to the MEE b̄ = 1.53, which is different from the
REE b̄REE = 4

3 .

4.2. The Boomerang Effect on the MSE

Next, we consider how both types of firms’ forecast accuracy are affected from
miscommunication or misinterpretation of information. To show this, we calculate
the (equilibrium) MSE for the forecasts of the Type-F and Type-L firms. The MSEs
are derived in Appendix F. The MSE for the Type-F firms is given as

MSEF = c̄(1 − βµ)(1 − βµc̄)σ 2
v + σ 2

η , (8)

and the MSE for the Type-L firms is given as

MSEL = (βµc̄)2σ 2
v + σ 2

η . (9)
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The MSE for the Type-F firms in (8) shows that when the Type-F firms accurately
observe the expectations from the Type-L firms (σ 2

v = 0), the Type-F firms obtain
the minimum MSE (MSEF = σ 2

η ). However, the finite σ 2
v reduces the Type-F

firms’ predictive accuracy where MSEF >σ 2
η . More interestingly, the results for

the Type-L firms indicate that only σ 2
v = 0 or σ 2

v → ∞ produce the most efficient
outcome, MSEL = σ 2

η . However, if there exists a finite σ 2
v , the Type-L firms’

forecasts become less efficient (i.e., larger MSE). We call this result the boomerang
effect on the MSE:

PROPOSITION 4 (The Boomerang Effect on the MSE). The finite variance of
the Type-F firms’ observational errors (σ 2

v ) generates a higher MSE relative to
the REE for the Type-L firms where MSEL = (βµc̄)2σ 2

v + σ 2
η > σ 2

η .

The proof is trivial as it comes directly from MSEL. The MSE of a correctly
specified linear forecasting model is typically equal to the variance of the
unforecastable noise. Under the REE where µ= 0 or σ 2

v = 0, the unforecastable
noise is ηt and therefore, the MSEL = σ 2

η . However, when µ> 0 and σ 2
v > 0, the

Type-L firms are not able to directly observe the (mis)interpretation error, vt−1,

making it additional unforecastable noise. Under the ALM, this additional noise
is equal to βµcvt−1. Therefore, MSEL is increased by (βµc̄)2σ 2

v as shown in
Proposition 4.

Next, the Type-L firms’ forecasts can actually have a higher MSE than the
Type-F firms’ forecasts under certain values of µ. We first present the following
proposition:

PROPOSITION 5. MSEL > MSEF if β > 0 and c̄ >
1−βµ

βµ
.

The proof is given in Appendix G. This proposition states that it may be possible
that MSEL > MSEF if c̄ is large enough. However, for β < 1

µ
, this cannot always

be the case since c̄ is constrained to be between zero and one. The following
corollary states that for MSEL > MSEF , it must be that µ and β are sufficiently
large:

COROLLARY 4. Conditions for MSEL > MSEF :

1. If µ< 1
2 , then there does not exist an E-stable q̄ such that MSEL > MSEF .

2. If there exists a unique MEE and µ∈ (1/2, 1), then there is a β̂ ∈ (1/2, 1) such that
if β̂ < β < 1, then MSEL > MSEF .

3. If µ ∈ ( 1
2 , 1), there exists an a ∈ (0, amin), and a β1 < β̂ < β2, such that

MSEL > MSEF for all β ∈ (β̂, β2) under the E-stable q̄1.
4. If µ∈ ( 8

13 , 1) and a ∈ (0, amax), then under the E-stable q̄3, MSEL > MSEF for all
β ∈ (β1, 1).

5. If µ∈ ( 2
3 , 1), there exists an a ∈ (amin, amax), and a β1 < β̂ < β2 < 1, such that

MSEL > MSEF for all β ∈ (β̂, β2) under the E-stable q̄1.

The proof is given in Appendix H. In Proposition 5 and Corollary 4, when the
fraction of the Type-F firms is larger than that of the Type-L firms (i.e., for some
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FIGURE 6. The Region of MSEL > MSEF .

µ> 1/2), it is possible that the MSE of the Type-L firms is larger than that of
the Type-F firms for some β ∈ ( 1

2 , min( 1
µ
, 1

1−µ
)). We assume that a > amax and

µ= 0.7 > 1
2 to illustrate a scenario when there exists a unique MEE in Figures 6

and 7. The shaded region in Figure 6 represents the values of c̄ and β such that
c̄ >

1−βµ

βµ
so that MSEL > MSEF . From Proposition 5, the shaded region becomes

larger as µ approaches to one.
As 0 < c̄ < 1 for β < 1 and c̄ = 1 is an MEE for β = 1, then, provided that β and

µ are large enough, it is possible to have an MEE c̄ which lies in the critical region
where MSEL > MSEF . In Figure 7, for a > amax we combine the shaded region in
Figure 6 with a function representing a unique c̄ given values of β.21 For a large β,
there exists some values of the MEE c̄ which lie in the shaded region. In Figure 7,
the numerical example shows that the function of the MEE intersects the boundary
of the shaded region at β = 0.74.22 It implies that when the proportion of Type-F
firms sufficiently outweighs that of Type-L firms (i.e., µ= 0.7), we can obtain a
MEE c̄ such that MSEL > MSEF for β ∈ (0.74, 1). However, when µ< 0.5, the
critical region does not exist for any β < 1. Therefore, when µ< 0.5 and β < 1, it
is impossible to obtain a MEE c̄ where MSEL > MSEF .

As noted earlier, the size of the boomerang effect is related to µ. In particular,
when the proportion of the Type-F firms becomes large (i.e., a large µ), equation
(4) shows that the weight of the misinterpretation error (vt−1) generated by the
Type-F firms increases. For β < 0, vt−1 is always misinformation as the price
level reacts in the opposite direction. Therefore, when β < 0, MSEL < MSEF for
all µ∈ [0, 1] and a ∈ (0,∞). However, for β > 0, the price level responds in
the same direction as vt−1 and it actually becomes “important” information. In
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FIGURE 7. The MEE of c satisfying MSEL > MSEF .

fact, given that µ> 1
2 , for a ∈ (0, amax) and β ∈ (β̂, max{1, β2}) or for a > amax

and β ∈ (β̂, 1), the temporary equilibrium resembles that of the Type-F PLM.
Therefore, Type-F firms actually have more information (through “dumb luck”)
about the process of the price level due to the form of the ALM. For expectation
formation, vt−1 seems to be unimportant information except that it feeds directly
into the actual law of motion. Consequently, if µ and β are sufficiently close to 1
such that c̄ >

1−βµ

βµ
, then vt−1 becomes important information for forecasting yt .

The variations of vt−1 would have a more significant effect (larger inaccuracy) for
the Type-L firms’ PLM. Eventually, when learning, the MSE for the Type-L firms
would turn out be larger than that for the Type-F firms. This would occur when
the proportion of the Type-F firms sufficiently exceeds that of the Type-L firms.

5. CONCLUSION

In this paper, we introduce a process of information diffusion in a modified Muthian
cobweb model where agents—firms—form their expectations in accordance with
an adaptive learning process. There are two types of firms following a Stackelberg
process in the market. The leading firms (Type-L) form initial forecasts while
the following firms (Type-F) observe (and use) the leading firms’ forecasts (with
noise) when forming their own expectations.

In this modified cobweb model, there may exist multiple MEE. However, if
the variance of the observational errors is sufficiently small and Type-F firms
attempt to minimize their MSE (given their observations of Type-L expectations),
then there will exist a unique MEE for β < 1. When there is a unique MEE for
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all β < 1, then the E-stability condition in the modified model is identical to
the E-stability condition under homogeneous expectations. However, if the
variance of the observational error is sufficiently large, there exists three MEE
where the “high” and “low” MEE are E-stable for β < 1 and the “middle”
MEE is E-unstable for β < 1. Furthermore, if there exist three solutions for
some range of β ∈ (β1, β2) where β2 ∈ (1, 2), then the “low” solution is E-stable
for all β ∈ (β1, β2) and the “high” and “middle” solutions are E-unstable for
all β ∈ (1, β2). We, therefore, have shown a general result in a well-known
model where the E-stability parameter space can actually be expanded through
heterogeneity.

It turns out that the inability to fully share information and the inability to
observe vt−1 by the Type-L firms will cause a “boomerang effect” on the forecasts
and forecast efficiency of the Type-L firms. We focus particular attention on the
equilibrium properties and forecasting accuracy of the model. We introduce and
find evidence for the boomerang effect, which we define as a situation in which
the inaccurate forecasts of the Type-F firms confound the Type-L firms’ forecasts.
Furthermore, the MSE of the Type-L firms can possibly exceed that of the Type-F
firms when the proportion of the Type-F firms is larger than the proportion of the
Type-L firms.

In the current setting of our model, heterogeneity—the proportion of the
Type-L and Type-F firms—is assumed to be exogenous. However, endogenizing
heterogeneity would be an important future research challenge [see Brock and
Hommes (1997); Evans and Ramey (1998)]. One specific issue to consider is
the degree to which heterogeneity exists for alternative types of firms if firms
optimally choose to become either Type-L or Type-F firms based on the trade-off
between forecast accuracy and the cost of acquiring forecast information.

The framework in this paper also can be extended to monetary policy issues
[see Bernanke and Woodford (1997)]. There are implications for the overall
performance of an inflation-stabilizing monetary policy [see Granato and Wong
(2006)]. If we substitute the public for the Type-F firms and the monetary
authority for the Type-L firms and also assume that the information disadvantage
resides in the public’s limited understanding of economic events, then a plausible
consequence (based on our model’s findings) is that information diffusion creates
a boomerang effect for the policy makers. Because the equilibrium forecasts in
an economy are an aggregation of agents’ forecasts, a large boomerang effect
can cause policy makers themselves to make inaccurate forecasts of economic
conditions. The inaccurate forecasts can eventually cause additional economic
volatility and failed stabilization policies.23

To alleviate the boomerang effect, one normative policy suggestion is that
policymakers should be more transparent about policy information. Greater trans-
parency may make it possible for the public to better understand how the policy
will work and hence make more accurate use of information from better informed
sources.24 More precision in information acquisition may reduce boomerang
effects, improve policy effectiveness, and help with overall economic performance.
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NOTES

1. See Evans and Honkapohja (2001) for further details about E-stability.
2. Information diffusion has been documented in many areas of research. For example, financial

economists have studied explanations for herding behavior in which rational investors demonstrate
some degree of behavioral convergence [see Devenow and Welch (1996)]. Most recently, studies
of monetary economics are exploring how information diffusion influences economic forecasting
behavior. The standard monetary view from the “credibility” literature holds that policy makers
have superior information to citizens [Romer and Romer (2000)] and hence can choose how much
information to disseminate for better stabilization outcomes [see Backus and Driffill (1985); Barro and
Gordon (1983)].

3. The terms “observational errors,” “(mis)interpretation errors,” and “(mis)communication errors”
are used interchangeably in the text.

4. The MEE concept will be discussed further in the following sections.
5. Lucas’s (1972) model shares the same reduced form as (1) with 0 < β < 1. Thus, our findings

would also apply to his model.
6. Honkapohja and Mitra (2003) present such a variant in their appendix. This is a model of

interrelated markets where the supply of one of the goods is affected by a production lag and the
supply of the other good is not. It turns out that β > 0 if both the demand and the supply curves of the
good without the production lag are relatively steep.

7. McCallum (1983, 1999) discusses the MSV concept at length, interpreting it as a fundamental
solution that includes no bubble or sunspot components. McCallum proposes a solution procedure that
generates a unique solution in a very wide class of linear RE models.

8. Kandel and Zilberfarb (1999) argue that people do not interpret existing information
in an identical way. Using Israeli inflation forecast data, they show that the hypothesis of
identical-information interpretation is rejected. In addition, Bernanke and Woodford (1997) study
“inflation forecast” targeting policy rule where policy makers are assumed to conduct monetary
policy by targeting private-sector forecasts of inflation. In their model, they also suggest a similar
argument regarding the error misinterpretation by private-sector forecasts. The authors argue that some
private-sector agents may be “incompetent” at using their information to produce optimal forecasts
(p. 659).

9. An equilibrium value of c is obtained via a linear projection. Hamilton (1994, p. 74)
points out that the linear projection gives the smallest MSE among a specific class of forecasting
rules.

10. Although MEE is precisely a restricted perceptions equilibrium (RPE) in a heterogeneous
expectations setting, we employ the term MEE here because the initial definition of RPE in Evans
and Honkapohja (2001) does not have heterogeneous perceptions and MEE was initially introduced
to emphasize that. However, it is natural to generalize RPE to incorporate heterogeneous misspecified
perceptions. See also Adam (2005), Adam, Evans, and Honkapohja (2006), Branch and Evans (2006),
and Guse (Forthcoming).

11. To obtain the MEE coefficient b̄, one can solve b̄ = T (b̄). To obtain c̄, one can solve c̄ = T (c̄)

and use the expression of b̄γ = b̄2(1 − β(1 − µ + µc̄)) from the equilibrium b̄.

12. We note here that because the observational errors are not observed by the first-moving agents,
the MEE in our model are similar to the exuberance equilibria discussed in Bullard, Evans, and
Honkapohja (2005).

13. In Appendix B, we restrict the discussion of equilibria for β > 1
µ

in Proposition B as there does

not exist an E-stable equilibrium when β > 1
µ

.
14. If a ∈ (0, amax) and β = β1 or β = β2, then there exists 2 real MEE as one of the two solutions

is repeated (due to an increase in β, two of the solutions have either become real or they are about to
become imaginary).

15. Note that a = σ 2
x

σ 2
v

= 4
800 = 0.005 and amin = (1−µ)µ2

4γ 2 = 0.0078. Given β = 1.05, we find that
a(β) = 0.00556 >a = 0.005. Therefore, there exist 3 real MEE: q̄1 ≡ (b̄1, c̄1) = (6.1336, 0.2836),
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q̄2 ≡ (b̄2, c̄2) = (10.8685, 0.5542), and q̄3 ≡ (b̄3, c̄3) = (−57.0022, 0.9715). As the model is located
in Region II in Figure 2, q̄1 is E-stable while q̄2 and q̄3 are E-unstable.

16. In this simulation, we specify the gain as follows: λt = λt−1
1+λt−1

and set λ1 = 0.02.
17. We find that the speed of convergence is slow in this simulation. The convergence for all

β ∈ (1, β2) cases seem to have a similar pattern.
18. Note that a = σ 2

x

σ 2
v

= 4
25 = 0.16 and amax = 27 ∗ (0.5)2 ∗ (8−7 ∗ 0.5)

22 ∗ (8 + 0.5)3 ≈ 0.0124. As a >amax, there

exists a unique MEE.
19. In this simulation, we assume that σ 2

v = 0 (a = ∞) and expectations have converged to the
REE for t = {−∞, . . . , 0} (i.e. b0 = bREE and c0 = 1). Therefore, Type-F firms perfectly understand
the expectations made by Type-L. We assume that after time t = 0, there is a permanent shock to the
information diffusion process so that σ 2

v > 0 (a ∈ (0, ∞)) for t ={1, . . . , ∞}.
20. In the following simulation, we specify the gain as follows: λt = λt−1

1+λt−1
and set λ1 = 0.1.

21. We assume µ = 0.7, a = 1
2 , and γ = 1.

22. Therefore, at β = 0.74, for this MEE, MSEL = MSEF .
23. A similar implication is also suggested by Bomfim (2001).
24. There is research supporting this commonsense suggestion. Bernanke et al. (1999) notes that

when information about the plans, objectives, or decisions of the monetary authorities are carefully
explained, the public can more easily understand the contents of a policy announcement.

25. Given σ 2
x > 0, as σ 2

v →∞, a → 0, then the function is linear. As discussed in part 1 of Lemma
1, the information from the Type-L firms becomes less useful when σ 2

v increases. In this case, as
σ 2

v → ∞, a → 0, there exists a unique MEE where c → 0 and b → γ /(1 − β(1 − µ)).
26. This is algebraically straightforward. A proof is available upon request.
27. For β = 1

µ
+ ξ , such that there are multiple real solutions, one solution is close to 1 while the

other solutions are near ∞ and −∞ respectively.
28. We omit this as it can easily be shown graphically.
29. This requires finding the β̄ such that cT R = cL. One then substitutes this expression into the

Cardano function to determine if there exists multiple or a unique real solution under this β̄. If
µ ∈ (0, 1/2), then β̄ ∈ (β3, β4) and if µ ∈ (1/2, 1), then β̄ ∈ (1/µ, β3).
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APPENDIX A

PROOF OF PROPOSITION 1

The model is in equilibrium if the following holds:

F(b)= Ab3 + Bb2 + Cb + D = 0, (A.1)

where A = (1−β)a, B = −aγ , C = [1−β(1−µ)](1−βµ), D = −γ (1−βµ). We remark
that (i) the solution to equation (A.1) also yields a solution for c in view of equation (7) and
(ii) that the subsequent arguments consider the nature of solutions to characterize the set of
equilibria for b and c and their values in particular cases. According to Cardano’s approach
[see Nickalls (1993)], there exists a single real root in a cubic function if G2 + 4H 3 > 0,
where G = A2D − ABC/3 + 2(B/3)3 and H = AC/3 − (B/3)2. We substitute A, B, C,
and D into Cardano’s solution and get what we refer to as the “Cardano function”:

R(a, β, µ, γ ) = G2 + 4H 3 = a3

729
(4M3 + aγ 2N 2),

where M = −aγ 2 + 3(1 −β){1 −β[1 +βµ(1 −µ)]} and N = 2(9 +aγ 2)− 9β(4 + 3µ−
β{2 + µ[5 + µ − β(2 + µ)]}). Also, let δ = −8 + β(8 + µ).

We now find

G2 + 4H 3 = 0,

for a = 0, a = a1(β), and a = a2(β), where25

a1(β) = 1

8γ 2
(1 − βµ){δ[1 − β(1 − µ)] + 27βµ(1 − β) −

√
βµδ3},

a2(β) = 1

8γ 2
(1 − βµ){δ[1 − β(1 − µ)] + 27βµ(1 − β) +

√
βµδ3}.

Note that a1(β) and a2(β) are real for β > 8
8+µ

. Therefore, there exists a unique real MEE
if β < 8

8+µ
.

It can be shown26 that a1(β) is monotonically decreasing in β for β ∈ ( 8
8+µ

, 1), a2(β)

is monotonically decreasing in β for β ∈ ( 8
8+µ

, min( 1
µ
, 1

1−µ
)), and a2(β)> a1(β) for all

β ∈ ( 8
8+µ

, 1
µ
).
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One can show that, for β < 1
µ
, the third derivative of the Cardano function with respect

to β is positive and the first and second derivatives with respect to β are equal to zero when
evaluated at a = 0. This implies that the Cardano function is increasing at a = 0, decreasing
at a = a1(β), and increasing at a = a2(β). Therefore, we can say for δ > 0, there is a single
MEE when a ∈ [0, a1(β)) or when a ∈ (a2(β),∞), and there are multiple equilibria when
a ∈ [a1(β), a2(β)].

Finally, as a1(β) and a2(β) are monotonically decreasing in β, one can obtain the
maximum and minimum a such that there may be multiple equilibria for some β. a1 is
minimized when β = 1 at a1 = 0 and a2 is maximized when β = 8

8+µ
at

amax = 27µ2(8 − 7µ)

γ 2(8 + µ)3
.

When β = 1, we have

a2 = amin = (1 − µ)µ2

4γ 2
.

Now, one can implicitly solve for the β ∈ [ 8
8+µ

, 1) that gives the solution to a1(β)= a and

the β ∈ [ 8
8+µ

, min( 1
µ
, 1

1−µ
)) that gives the solution to a2(β)= a for some a ∈ (0, amax]. Let

β1 ∈ [ 8
8+µ

, 1) be the solution to
a1(β) = a,

and β2 ∈ [ 8
8+µ

, min( 1
µ
, 1

1−µ
)) be the solution to

a2(β) = a,

where β1 ≤ β2.

APPENDIX B

DISCUSSION OF EQUILIBRIA FOR β > 1
µ

PROPOSITION B. For β > 1
µ

and a > 0, there are three cases to consider for multiple
equilibria:

1. If β ∈ ( 1
µ
, β3), then there are 3 MEE for some β3 ∈ ( 1

µ
, ∞).

2. If β ∈ (β3, β4), then there exists a single real MEE for some β4 ∈ (max( 1
µ
, 1

1−µ
),∞)

where β3 < β4.

3. If β > β4, then there exists 3 MEE.

Proof. It can be shown that a1(β)> 0 is monotonically increasing in β for β > 1
µ

,

a2(β)> 0 is monotonically increasing in β for β > max( 1
µ
, 1

1−µ
), and a1(β)> a2(β) for

all β > 1
µ

. Therefore, using the Implicit Function Theorem, one can obtain a β3 ∈ ( 1
µ
, ∞)

and a β4 ∈ (max( 1
µ
, 1

1−µ
), ∞) that give the respective results:

a1(β3) = a,

a2(β4) = a,
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where β3 < β4. We find when β = 1
µ

there is a unique solution of c = 1. For β ∈ ( 1
µ
, β3),

the Cardano function is negative and thus multiple solutions exist. Call these solutions:
ĉ1 < ĉ2 < ĉ3. where ĉ1 ∈ (−∞, µ−1

µ
), ĉ2 ∈ (1, cH ), and ĉ3 ∈ (cH , ∞) for β ∈ ( 1

µ
, β3). For

β ∈ (β3, β4), the Cardano function is greater than zero and thus there exists a unique real
solution, ĉ1 ∈ (−∞, µ−1

µ
). For β ∈ (β4, ∞), the Cardano function is less than zero and thus

there exists multiple solutions. Here, ĉ1 ∈ (−∞, µ−1
µ

), ĉ2 ∈ ( µ−1
µ

, cL), and ĉ3 ∈ (cL, 0). We
finally note that limβ→∞ ĉ1 = limβ→∞ ĉ2 = µ−1

µ
, and limβ→∞ ĉ3 = 0.

APPENDIX C

PROOF OF LEMMA 1

For (1), consider the MEE for c̄:

c̄ = b̄2σ 2
x

b̄2σ 2
x + (1 − βµ)σ 2

v

.

As 1 − βµ> 0 for all β < 1
µ

, it must be that c̄ ∈ (0, 1].

For (2), consider the MEE for b̄:

b̄ = γ

1 − β(1 − µ + µc̄)
.

As 1 − β(1 − µ + µc̄) > 0 for β < 1, b̄ and γ must have the same sign.
For (3a), consider the following function:

F(c, β) = c(1 − βµ)[1 − β + (1 − c)βµ]2 − a(1 − c)γ 2.

F (c, β) is obtained by inserting the expression for the MEE b̄ into the expression for
the MEE c̄ and multiplying the result by (1 − β + (1 − c)βµ)2. The zeros of F(c, β)

are fixed points to the T-map. Note that the solution(s), c̄ is (are) not continuous in β

if (1 − β + (1 − c)βµ)2 = 0. The solution is not continuous in β for β = 1 and c̄ = 1.
Furthermore, the Cardano function shows that the MEE are not continuous at the break
where β = 1

µ
.27

It follows that

Fβ(c, β) = −c[1 − β − (1 − c)βµ]{2 − µ[1 − 2c + 3β − 3(1 − c)βµ]}.
This derivative is equal to zero at the following values for c:

c = 0

c = 1 − β(1 − µ)

βµ

c = 1 − 1

µ
+ 1

3βµ − 2
.

The second solution gives a solution of b̄ = ∞. If c̄ is continuous in β for some range,
then when c̄ <

1−β(1−µ)

βµ
for some β in that range, it must be that c̄ <

1−β(1−µ)

βµ
for that
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entire range. The third solution is undefined if β = 2
3µ

. It can be shown that if β < 2
3µ

, then
Fβ,c(c, β) > 0 for c = −∞ and c = ∞ and if β > 2

3µ
, then Fβ,c(c, β)< 0 for c = −∞ and

c = ∞. Furthermore,

1 − β(1 − µ)

βµ
< 1 − 1

µ
+ 1

3βµ − 2
,

for β ∈ ( 2
3µ

, 1
µ
). This implies

Fβ(c, β) < 0,

for c ∈ (0,
1−β(1−µ)

βµ
). Note also that 1−β(1−µ)

βµ
> 1 for all β < 1. As a consequence, the func-

tion F(c, β) is monotonically decreasing in β for β < 1. One also can show that Fc(c, β) > 0
for c = −∞ and c = ∞ when β < 1. Therefore, if there is one solution, c̄, to equation

F(c, β) = 0,

then it is monotonically increasing in β for β < 1. Note that because c̄ = 1 at β = 1, c̄ is
monotonically decreasing in β. However, as c̄ = 1 for β = 1

µ
, it must mean that there is

some β̃ ∈ (1, 1
µ
) such that cL < c̄ = 1− 1

µ
+ 1

3βµ−2 . For β ∈ (β5,
1
µ
), c̄ will be monotonically

increasing in β.
For (3b), if there are three solutions: c1 < c2 < c3, then it follows directly from the

discussion above that c1 and c3 are monotonically increasing in β while c2 is monotonically
decreasing in β for β < 1. Consider the solution c1 for β ∈ (1, β2). One can show that
cL <

1−β(1−µ)

βµ
for all β ∈ ( 8

8+µ
, β2), so it follows that c1 <

1−β(1−µ)

βµ
for all β ∈ (β1, β2).

Therefore, c1 is monotonically increasing in β for β ∈ (β1, β2). Next, consider the solution
c2 for β ∈ (1, β2). For β = 1, c2 < 1, and therefore, c2 is decreasing in β. c2 will only
start to increase if c2 = 1−β(1−µ)

βµ
. In addition, 1−β(1−µ)

βµ
is monotonically decreasing in

β and that 1−β(1−µ)

βµ
= cL when β = min( 1

µ
, 1

1−µ
). As β2 < min( 1

µ
, 1

1−µ
), it follows that

c2 <
1−β(1−µ)

βµ
for all β ∈ (β1, β2). Therefore, c2 is monotonically decreasing in β for

β ∈ (β1, β2). Finally, consider the solution c3. Note that because c3 = 1 at β = 1, c3 is
monotonically decreasing in β. However, as c3 = 1 for β = 1

µ
, it must mean that there is

some β̃ ∈ (1, 1
µ
) such that cL < c3 = 1− 1

µ
+ 1

3βµ−2 . For β ∈ (β5,
1
µ
), c3 will be monotonically

increasing in β.

APPENDIX D

PROOF OF PROPOSITION 2

A bivariate ODE is stable if the trace of the Jacobian matrix is less than zero and the
determinant of the Jacobian matrix is greater than zero. From (5), the bivariate ODE is

dφ

dτ
= h(φ) = T (φ) − φ.
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One can solve for the Jacobian matrix:

Dh(φ) =

⎡
⎢⎢⎢⎢⎣

−1 + β + (−1 + c)βµ bβµ

σ 2
x

[
σ 2

v γ − b2σ 2
x σ 2

v + 2bσ 2
v β(1 − µ)

]
(
σ 2

v + b2σ 2
x

)2 −1 + βµ

⎤
⎥⎥⎥⎥⎦ .

The Trace of the Jacobian matrix is the following:

−2 + β(1 + cµ).

This is negative for β < 1 as c ∈ (0, 1) or for β > 1, it must be that

c < cT R = 1

µ

(
2 − β

β

)
.

We consider case of β > 1 below. Next, if we enter the following into the determinant:

γ = b[1 − β(1 − µ + µc)],

b =
√

(1 − βµ)cσ 2
v

(1 − c)σ 2
x

,

then we get the following expression for the determinant:

(
σ 2

v

)2
(1 − βµ)(1 − cβµ) {1 − β[1 − (1 − c)(1 − 2c)µ]}

(1 − c)2
.

For β < 1
µ

, this expression is greater than zero if:

{1 − β[1 − (1 − c)(1 − 2c)µ]} > 0.

Therefore, when

c ∈ [cL, cH ],

where

cH = 3

4
+

√
βµ2 − 8µ(1 − β)

16βµ2
,

cL = 3

4
−

√
βµ2 − 8µ(1 − β)

16βµ2
,

then the determinant is negative and the given MEE is not E-stable.
Now put cH into the cubic expression for c. This expression is equal to zero only if

a = a1(β),
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and if one substitutes cL into the cubic expression for c, this expression is equal to zero
only if

a = a2(β),

where a2(β) ≥ a1(β). Note that these are the values of a such that the Cardano function is
equal to zero, meaning that the solutions can be in [cL, cH ] only if there may exist multiple
MEE for some β.

First, consider the case of a unique equilibrium. If β ∈ [ 8
8+µ

, 1) it must be that c > cH as
c ∈ [0, 1] and is continuous in β. As c /∈ [cL, cH ], the unique MEE is E-stable for all β < 1.
Furthermore, c = cH = 1 for β = 1 and c ∈ (cL, cH ) for β ∈ (1, 1

µ
). If there exists a unique

MEE for β ∈ (1, 1
µ
), it is not E-stable. Consequently, we can say that if c is unique, then it

is E-stable for β < 1.
Next, consider the case where there are multiple equilibria if β ∈ [β1, β2] where

β1 ∈ [ 8
8+µ

, 1) and β2 ∈ [ 8
8+µ

, 1
µ
). As imaginary solutions come in conjugate pairs, it must

mean that 2 solutions must be equal at β = β1 and β = β2. Because each real c is continuous
in β for β ∈ (β1, β2), it must be that c̄2 = c̄3 = cH at β = β1, c̄1 = c̄2 = cL at β = β2, and c̄3 = 1
when β = 1. Therefore, for β < β1, the unique real solution is q̄1 and for β2 < β < 1

µ
, the

unique real solution is q̄3. As each solution is continuous in β, it must be that c̄2 ∈ [cL, cH ] for
all β ∈ [β1, β2]. Therefore, the MEE q̄2 is not E-stable for all β ∈ [β1, β2]. Due to continuity,
it must also be that 1 > c̄3 > cH for all β ∈ (β1, 1). If β2 > 1, and since c̄3 ∈ (cL, 1) and cH > 1
for β > 1, q̄3 is not E-stable for β > 1. When β ∈ (β2,

1
µ
), q̄3 is the unique real solution.

However, by continuity it must be that c3 ∈ (cL, 1) and therefore, the MEE is not E-stable.
Finally, for q̄1, it must be that c̄1 < cL for all β1 < β < β2. Therefore, the determinant
condition is satisfied; however, if β2 > 1, it is possible that the trace condition may fail.
Recall that for β > 1, the trace condition will fail if

c < cT R = 1

µ

(
2 − β

β

)
.

The value of β such that cT R = cL is the following:

βT R = 8 + 5µ −
√

16µ − 7µ2

2(2 + 2µ + µ2)
.

If β2 > βT R , then the trace condition for q̄1 may fail. However, one can show that the
maximum value for β2 = min( 1

µ
, 1

1−µ
) < βT R for all µ ∈ [0, 1].28 This means

c̄1 < cT R,

for all β ∈ [β1, β2]. As the trace condition is satisfied and c̄1 < cL, q̄1 is E-stable for all
β ∈ [β1, β2]. Therefore, there exists the possibility of an E-stable solution for β > 1 in the
above cobweb model.

Next, we consider the conditions for E-stability when β > 1/µ. For β > 1/µ, the
determinant condition can be simplified to

(1 − cβµ){1 − β[1 − (1 − c)(1 − 2c)µ]} < 0.

For β > 1/µ, we have cT R < 1/βµ and cT R < cH and thus for a solution to be E-stable, it
must be that

c̄ ∈ (cL, cT R).
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If cT R < cL, then there can not exist an E-stable solution. For β ∈ (1/µ, β3) we have
c̄ /∈ (cL, cT R) for all three solutions. For β ∈ (β3, β4), as ĉ1 ∈ (−∞, µ−1

µ
), it must be that

ĉ1 /∈ (cL, cT R) as

lim
β→∞

cL >
µ − 1

µ
.

Finally, for β ∈ (β4, ∞), the only candidate for E-stability is ĉ2 ∈ (cL, 0). However, we
have cT R < cL for β > β4.29 ĉ2 is E-unstable for β ∈ (β4, ∞) , and if β > 1

µ
, all solutions

are E-unstable.

APPENDIX E

PROOF OF COROLLARY 3

Recall the MEE for b:
b = γ

1 − β(1 − µ + µc)
.

Under homogeneous expectations (µ = 0), when β > 1, b and γ will have opposite signs.
This destabilizes the system and makes the REE unstable under learning. Recall that we
have shown that b and γ share the same sign for β < 1. Under our heterogeneous framework
when β > 1, b and γ will have the same sign if the following holds:

c < cs = 1 − β(1 − µ)

βµ
.

Next, we show that cs > cL for all β ∈ [ 8
8+µ

, min( 1
µ
, 1

1−µ
)]. Subtract cs from cL to get the

following:

S(β) = cL − cs = −4 − β[4 − µ(1 + √
δ/βµ)]

4βµ
.

For β ∈ [ 8
8+µ

, min( 1
µ
, 1

1−µ
)], this is minimized at β = 1. One just needs to look at the end

points below:

S

(
8

8 + µ

)
= −3

8
,

S

(
1

1 − µ

)
= 0,

and, therefore, S(min( 1
µ
, 1

1−µ
)) ≤ 0. The MEE value of b given c1 can be expressed as

b1 = γ

1 − β(1 − µ + µc1)
.

As 0 < c1 < cL < cs , it must be the case that

sign(b1) = sign(γ ).

As there are no other E-stable MEE for β > 1, we have shown that there does not exist an
E-stable MEE such that

sign(b̄) 	= sign(γ ).
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APPENDIX F

DERIVATIONS OF MSEs

First, we derive the MSE of the leaders. For each forecasting model, i, its corresponding
MSEi is defined as the following:

MSEi = E
[(

yt − ye
i,t

)2]
.

For the leaders, we get the following:

MSEL = E
[
(yt − b̄xt−1)

2
]
,

where

yt = {βb̄[µ(c̄ − 1) + 1] + γ }xt−1 + βµc̄vt−1 + ηt .

This can be simplified to

MSEL = (βµc̄)2 σ 2
v + σ 2

η .

The MSE for the followers is expressed as follows:

MSEF = E{[yt − c̄(b̄xt−1 + vt−1)]
2}.

This can be simplified to

MSEF = (1 − c̄)2 b̄2σ 2
x + [(1 − βµ) c̄]2 σ 2

v + σ 2
η .

From the equilibrium for c̄, we can find an expression for b̄2σ 2
x :

b̄2σ 2
x = (1 − βµ) c̄σ 2

v

(1 − c̄)
.

Therefore, we have

MSEF = c̄ (1 − βµ) (1 − βµc̄) σ 2
v + σ 2

η .

APPENDIX G

PROOF OF PROPOSITION 5

Consider the difference between MSEL and MSEF :

MSEL − MSEF = (βµc̄)2 σ 2
v − c̄ (1 − βµ) (1 − βµc̄) σ 2

v

= (−c̄ + βµc̄2 + βµc̄)σ 2
v .
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If β > 0, the expression can be positive if

c̄ >
1 − βµ

βµ
.

If β < 0, the expression can be positive if

c̄ <
1 − βµ

βµ
< 0.

Because c̄ ∈ (0, 1], this cannot occur.

APPENDIX H

PROOF OF COROLLARY 4

(1) In our Proposition 5, we show that if

c > cm = 1 − βµ

βµ
,

then MSEL > MSEF . For µ = 1
2 , we have cm = 1 at β = 1 and because cm is decreasing in

µ and c ∈ (0, 1) for β < 1, it must mean that cm > c̄ for β < 1. Therefore, MSEL < MSEF

for β < 1 and µ∈ (0, 1/2). For β > 1, there is only one possible E-stable solution, c1. It
can be shown that c1 ∈ (0, cL). Therefore, if cm > cL for all β ∈ (β1, β2), then under any
c1, it must be that MSEL < MSEF . We also find that cL = cm when

β = βm1 = 2

3µ − √
(2 − 3µ)µ

,

where βm1 > 1
1−µ

for µ< 1
2 . As cL and cm are decreasing in β, it must mean that cL < cm

for β < βm1 and cL > cm for β > βm1. As β2 ∈ ( 8
8+µ

, 1
1−µ

) for µ < 1
2 , it must be that c1 < cm.

Therefore, when µ < 1
2 , MSEL < MSEF under c1 for all β ∈ (β1, β2).

(2) As cm is monotonically decreasing in β, cm < 1 if βµ> 1/2, and when β = 1:

cm = 1 − µ

µ
.

Assume that µ > 1/2, so we have the following:

cm < 1,

for β = 1. If c̄ is unique for all β < 1
µ

, then because c̄ is continuous in β and c̄ = 1 at β = 1,

it must be that there exists a β̂ ∈ (1/2, 1) such that cm = c̄. Therefore, for β̂ < β < 1, we
will have

c̄ >
1 − βµ

βµ
,



LEARNING FROM THE EXPECTATIONS OF OTHERS 377

and thus
MSEL > MSEF .

(3) For µ> 1
2 , βm1 < 1

µ
. As β2 ∈ ( 8

8+µ
, 1

µ
) for µ > 1

2 , there will exist a small a > 0, such
β2 > βm1 and therefore, for all β ∈ (βm1, β2) it must be that cL > cm. As c1 is continuous
in β, there must exist a βm1 ≤ β̂ < β2 such that c1 = cm and c1 > cm for all β ∈ (β̂, β2).
Therefore, for β ∈ (β̂, β2), MSEL > MSEF under c1.

(4) Note that cH (and thus a possible value for c3) is minimized at β = 8
8+µ

where
cH = 3/4. If β = 8

8+µ
, then cm = cH if µ= 8/13. As cH is increasing in β, and cm is

decreasing in β and µ, it must be that cH > cm for all β if µ> 8/13. As c3 > cH for
all β > 8

8+µ
, it follows that c3 > cm for all β > 8

8+µ
. Therefore, MSEL > MSEF under an

E-stable c3 for β ∈ (β1, 1).
(5) When µ = 2

3 , the curve representing cm for all β is tangent to the curve representing
cL. This point of tangency is at β = 1. As cm is decreasing in µ, it must be that cm < cL

for all β > 8
8+µ

when µ∈ ( 2
3 , 1]. Therefore, when µ ∈ ( 2

3 , 1], we can choose a small a > 0,
such that β2 is sufficiently close to 1. As c1 is continuous in β for β ∈ (β1, β2), then there
must exist a β̂ such that c1 = cm and c1 > cm for all β ∈ (β̂, β2). Therefore, for β ∈ (β̂, β2),
MSEL > MSEF under c1.


