

- ABM has been considered as a bottom-up approach modeling behaviors of <u>a group of agents</u>, rather than a representative agent, in a system.
- The representative-agent hypothesis allows for greater ease in solution procedures.
 - It is easier to find the equilibrium (relatively...).
 - $\bullet\,$ This is usually called the $\underline{\mbox{analytical optimization}}$.

- Examples of the representative-agent models:
 - Profit maximization, utility maximization, or cost/loss minimization...
- Methods of optimization:
 - (1) First-order condition unconstrained optimization
 - (2) Lagrangian multiplier constrained optimization
 - (3) Dynamic optimization
 - ${\scriptstyle \bullet }$ (a) Bellman equation (over discrete time), and
 - (b) Hamiltonian multiplier (over continuous time).

▲□▶ ▲圖▶ ▲≧▶ ▲≧▶ ≧ める

<ロ> (四) (四) (三) (三) (三)

What is Agent-based Modeling? Genetic Algorithm - The Mechanism of Learning

Background What is Agent-based Modeling?

Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

What is Agent-based Modeling? Genetic Algorithm - The Mechanism of Learning

Background What is Agent-based Modeling?

• LeBaron and Tesfatsion (2008, 246): "Potentially important real-world factors such as subsistence needs, incomplete markets, imperfect competition, inside money, strategic behavioral interactions, and open-ended learning that tremendously complicate analytical formulations are typically not incorporated"

- One important element of ABM is that it allows the possibility of agents' interactions in micro levels with the assumption of bounded-rationality or imperfect information.
- Given agents' heterogenous characteristics and their interactions at the micro level, we can simulate the system and observe changes in the macro level over time according to the system-simulated data.

- Poli. Sci. (Bendor, Diermeier and Ting, APSR 2003; Fowler, JOP 2006)
 - BDT (2003):
 - A computational model by assuming that voters are adaptively rational voters learn to vote or to stay home in a form of trial-and-error.
 - Voters are reinforced to repeat an action (e.g., vote) in the future given a successful outcome today.
 - The turnout rate is substantially higher than the predictions in rational choice models.
 - Fowler (2006):
 - He revises the BDT model by including habitual voting behavior.
 - Fowler finds his behavioral model is a better fit to the same data BDT use.

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

- Economics
 - Econ. Growth Beckenbach, et al. (JEE, 2012) Novelty creating behavior and sectoral growth effects.
 - Market Structure Alemdar and Sirakaya (JEDC, 2003) Computation of Stackelberg Equilibria.
 - Policy Making Arifovic, Bullard and Kostyshyna (EJ, 2013)
 - The effects of social learning in a monetary policy context.
 - The Taylor Principle is widely regarded as the necessary condition for stable equilibrium.
 - However, they show that it is not necessary for convergence to REE minimum state variable (MSV) equilibrium under genetic algorithm learning.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

What is Agent-based Modeling? Genetic Algorithm - The Mechanism of Learning

Outline

1 Macro-Simulation

2 Background

- What is Agent-based Modeling?
- Genetic Algorithm The Mechanism of Learning

3 Arifovic (1994): Cobweb Model under GA

- Cobweb Model
- The GA Learning
- Conclusions

4 A Simple GA Exercise

- A Simple Profit Maximization Problem
- The GA Operators
- MATLAB Codes
- Simulations

5 Concluding Remarks

Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

What is Agent-based Modeling? Genetic Algorithm - The Mechanism of Learning

Genetic Algorithm - The Mechanism of Learning

Background

Genetic Algorithm - The Learning Mechanism

- The genetic algorithm (GA), developed by John Holland (1970), is considered one of the evolutionary algorithms inspired by natural evolution with a core concept of "survival of the fittest".
- The GA describes the evolutionary process of a population of genetic individuals with heterogeneous beliefs in response to the rules of nature.

Background

Human Chromosomes - 23 pairs

20

16

1)

71

A Simple GA Exercise Concluding Remarks

Arifovic (1994): Cobweb Model under GA

This Presentation

13

55

Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

EITM Summer Institute (2015)

What is Agent-based Modeling? Genetic Algorithm - The Mechanism of Learning

Evolutionary Dynamics: Genetic Algorithm

◆□▶ ◆□▶ ◆三▼ ▲三▼ ● ● ●

This Presentation

We introduce Arifovic (1994) as an example to investigate if the macro-level stability condition (the cobweb theorem) is necessary for a stable cobweb economy under GA.

We would also like to see how to apply the genetic algorithm on a simple economic model.

Important terms:

- Genes, Chromosomes, and Populations
 - Chromosomes: Genetic individuals making heterogeneous decisions
 - Genes: Elements of a decision that a genetic individual makes
 - Population: A group of genetic individuals with heterogeneous decisions

▲日 > ▲国 > ▲国 > ▲国 > ろん

autosomes U.S. National Library of Medicine

14

X

15

sex chromosomes

17

US National Library of Medicine: http://dhr.nlm.nih.gov

Genetic Algorithm - The Mechanism of Learning

This Presentation

 $\Sigma DNA = Gene$, and $\Sigma Gene = Chromosome$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

Genetic Algorithm - The Mechanism of Learning

This Presentation

We introduce Arifovic (1994) as an example to investigate if the macro-level stability condition (the cobweb theorem) is necessary for a stable cobweb economy under GA.

We would also like to see how to apply the genetic algorithm on a simple economic model.

Important terms:

- Reproduction, Mutation, and Crossover
 - Reproduction: An individual chromosome is copied from the previous population to a new population.
 - Mutation: One or more gene within an individual chromosome changes value randomly.
 - Crossover: Two randomly drawn chromosomes exchange parts of their genes.

500 -2

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

Genetic Algorithm - The Mechanism of Learning

This Presentation

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ >

Cobweb Model

Outline

Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

Cobweb Model

The cobweb model- An Introduction

- Assuming that farmers "forecast" the price in the next period based on the price they observe today, that is, $P_{t+1}^e = P_t$.
- If the current price level P_t is high (and is higher than the equilibrium price P^* , which is assumed to be unknown for the farmers). It can be written as: $P_{t=1} > P^*$.
 - At time t = 1, farmers would be very happy to plant more today so that they will have more output $(Q_{t=2})$ which can be sold at the high price they expect in the next period.
 - At time t = 2, since all farmers did the same in period 1, there are too much output available, which creates a "surplus" in the market, the price drops sharply at t = 2 due to the excess supply, and it goes below the equilibrium: $P_{t=2} < P^* < P_{t=1}$.

Cobweb Model Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

The cobweb model- An Introduction

- What would be the planting decision for the farmers at t = 2?
 - At time t = 2, since they observe the today's price is low, they would expect the price will also be low in the next period (t = 3). Therefore, they decide to plant less today...

Cobweb Model

Background

A Simple GA Exercise Concluding Remarks

Arifovic (1994): Cobweb Model under GA

- At time t = 3, since all farmers again are doing the exact same thing, the total output level turns out to be very low this time. $Q_{s,t=3} < Q_{d,t=3}$ (shortage!). Therefore, the price jumps up!
- What would be the planting decision for the farmers at t = 3 now?
 - At time t = 3, since they observe the today's price is now high again, they would expect the price will also be high in the next period (t = 4). Therefore, they decide to plant more today...
- This story keeps going...

Cobweb Model

The cobweb model- An Introduction

The cobweb model- An Introduction

Background Cobweb Model Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks The cobweb model - an mathematical illustration

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

EITM Summer Institute (2015)

Cobweb Model

Background

A Simple GA Exercise Concluding Remarks

Arifovic (1994): Cobweb Model under GA

12

10

Price @

The cobweb model- An Introduction

- Arifovic (1994) assumes each firm *i* chooses a production level q_{it} to maximize its expected profit π^e_{it} .
- The cost function for firm *i* is:

$$C_{it} = aq_{it} + \frac{1}{2}bmq_{it}^2$$
, where $a, b > 0$.

• Given the expected price of the good P_t^e at time t, firm i is maximizing the following profit function:

$$\pi_{it}^{e} = P_{t}^{e}q_{it} - C_{it}(q_{it}) = P_{t}^{e}q_{it} - aq_{it} - \frac{1}{2}bmq_{it}^{2}$$

• The first order condition for each firm *i* is:

$$P_t^e - a - bmq_{it} = 0 \Rightarrow q_{it} = \frac{P_t^e - a}{bm}.$$

Time

Evolutionary Dynamics: Genetic Algorithm

4 E b .

≣ ୬९୯

ground Cobweb Model er GA The GA Learnin xercise Conclusions

The cobweb model - an mathematical illustration

Assuming all firms are identical so that q_{it} = q_t ∀i, the aggregate supply in the market is:

$$Q_t = \sum_{i=1}^m q_{it} = mq_t = \frac{P_t^e - a}{b},$$
 (1)

where m = number of firms in the market.

• Assuming that the market demand is a linear function:

$$P_t = \gamma - \theta Q_t, \qquad (2)$$

where $Q_t = \sum q_{it}$.

• In equilibrium where (1)=(2), we can derive the following law of motion for the price level:

Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

The Cobweb Theorem and Simulation

	Stable Case	Unstable Case
Parameters	$\left(\frac{\theta}{b} < 1\right)$	$\left(\frac{\theta}{b} > 1\right)$
γ	2.184	2.296
θ	0.0152	0.0168
a	0	0
b	0.016	0.016
m	6	6
P^*	1.12	1.12
$Q^* = mq^*$	70	70

 Table 12.1: Cobweb Model Parameters

The Cobweb Theorem and Other Expectations Formations

• The dynamics of the price level:

$$P_t = \frac{\gamma b + a\theta}{b} - \frac{\theta}{b} P_t^e.$$

- According to Cobweb Theorem, the model is stable if θ/b < 1, that is, θ < b. However, the model is unstable if θ/b > 1, that is, θ > b.
- Arifovic discusses three types of expectations formations:
 - Static expectations (i.e., $P_t^e = P_{t-1}$):
 - The model is stable only if $\theta/b < 1$.
 - **2** Simple adaptive expectations $(P_t^e = \frac{1}{t} \sum_{s=0}^{t-1} P_s)$:
 - The model is stable in <u>both</u> cases (Carlson, 1968).
 - **③** Least squares learning $(P_t^e = \beta_t P_{t-1}, \beta_t = \text{OLS coefficient})$:
 - The model is stable only if $\theta/b < 1$ (Bray and Savin, 1986).

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

The Cobweb Theorem and Simulation - Static

Static expectations (i.e.,
$$P_t^e = P_{t-1}$$
):

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

The Basic GA and Arifovic's New GA Operator

New GA Operator - Arifovic (1991, 1994)

EITM Summer Institute (2015)

Evolutionary Dynamics: Genetic Algorithm

• Arifovic (1994) simulates the cobweb model based on three basic genetic operators in the GA simulations:

The GA Learning

- (1) reproduction, (2) mutation, and (3) crossover.
- She also introduces a new operator, called *election*, in the simulations.
- Election is an operator to "examine" the fitness of newly generated (or offspring) chromosomes and then compare them with their parent chromosomes.

- The Rules of Election:
 - Both offspring chromosomes <u>are elected</u> to be in the new population at time t+1 if $E_t \left(V \left(C_{it+1}^{offspring} \right) \right) > V \left(C_{it}^{Parent} \right)$
 - However, if only one new chromosome has a higher fitness value than their parents, the one with lower value will not enter the new population, but one of the parents with a higher values stays in the new population.
 - If both new chromosomes have lower values than their parents $E_t\left(V\left(C_{it+1}^{offspring}\right)\right) < V\left(C_{it}^{Parent}\right)$, they cannot enter but their parents stay in the new population.

The GA Simulations - Stable Case $(\theta/b < 1)$

The GA Learning

Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

nd Cobweb Model A The GA Learning ise Conclusions

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

Outline

Macro-Simulation

- 2 Background
 - What is Agent-based Modeling?
 - Genetic Algorithm The Mechanism of Learning

3 Arifovic (1994): Cobweb Model under GA

- Cobweb Model
- The GA Learning
- Conclusions
- 4 A Simple GA Exercise
 - A Simple Profit Maximization Problem
 - The GA Operators
 - MATLAB Codes
 - Simulations
- **5** Concluding Remarks

Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks Conclusions

- Arifovic (1994) introduces the GA procedure as an alternative learning mechanism.
- This alternative learning mechanism mimics social behavior:
 - imitation, communication, experiment, and examination.
- Arifovic uses the GA simulated data to compare with the data generated in human-subject experiments (Wellford, 1989).
 - In an unstable case of the cobweb model, the divergent patterns *do not* happen under both GA learning and human-subject experiments.
 - Price and quantity fluctuate around the equilibrium in *basic* GA learning and human-subject experiments.

・ロト・日本・モート ヨー うへの

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

▲日▼▲□▼▲目▼▲目▼ 目 のへの

• What is Agent-based Modeling?

• Genetic Algorithm - The Mechanism of Learning

A Simple Profit Maximization Problem The GA Operators MATLAB Codes

Outline

1 Macro-Simulation 2 Background

A Simple Profit Maximization Problem The GA Operators MATLAB Codes

Profit Maximization

9 Profit function: $\pi = p \times q - c(q)$.

 3 Arifovic (1994): Cobweb Model under GA Cobweb Model The GA Learning Conclusions 3 A Simple GA Exercise A Simple Profit Maximization Problem The GA Operators MATLAB Codes Simulations 	 Demand: p = a - bq. Supply (cost function): c = d + eq. Maximizing profit: max_q π = (a - bq)q - (d + eq). Optimal level of output: q* = (a - e)/2b. 						
Concluding Remarks EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm	 ・ (日)・(日)・(日)・(日)・(日)・(日)・(日)・(日)・(日)・(日)・						
Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks A Simple GA Exercise Concluding Remarks	Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks						
 Macro-Simulation Background What is Agent-based Modeling? Genetic Algorithm - The Mechanism of Learning Arifovic (1994): Cobweb Model under GA 	 Chromosome C_i consists of a set of 0 and 1, where L is the length of a chromosome (the number of genes). B^{max} (C_i) = 2^L - 1 represents the maximum numerical value of a chromosome with the length L. For example, if L = 10, the maximum value of a chromosome: B(11111111) = 2¹⁰ - 1 = 1023. We can use the B operator to compute a numerical value of a chromosome (e.g., C_i = 0100101110) : B(0100101110) = 0×2⁹ + 1×2⁸ + 0×2⁷ + 0×2⁶ + 1×2⁵ + 0×2⁴ + 1×2³ + 1×2² + 1×2⁴ + 1×2						
 Simulations Concluding Remarks 	$1 \times 2^{3} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} = 302.$						

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

・ロト ・日 ・ モー・ モー・ シック

Notations under the GA

Assume that there are M = 8 genetic individuals. For L = 10, we can generate an initial genetic population P₀ in an M × L matrix (that is, 8 × 10 matrix):

The GA Operators

• For example:

	0100101110
	1110101010
	0101110100
Л	0100001010
$P_0 =$	1110101000
	0101101101
	1100101010
	0100011100

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks Notations under the GA Nota

• An economic value for a chromosomes $V(C_i)$ based on the following value function:

$$V(C_i) = \frac{U^{max}}{B^{max}} \times B(C_i).$$

• For example, given the maximum output level is $U^{max} = 100$, and $C_i = 0100101110$ (i.e., $B(C_i) = 302$), we can calculate the output level for firm *i*:

$$q_i = V(C_i) = \frac{100}{1023} \times 302 = 29.52 \approx 30.52$$

A Simple Profit Maximization Problem **The GA Operators** MATLAB Codes Simulations

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

▲日▼▲□▼▲目▼▲目▼ 目 のへの

Notations under the GA

- According to the problem of profit maximization, if a = 200, b = 4, and e = 40, then $q^* = 20$.
- In this case, the maximum value of a chromosome can be too large for this problem $(B^{max} = 1023)$.
- We can define a maximum economic value for a chromosomes $V(C_i)$ based on the following value function:

$$V(C_i) = \frac{U^{max}}{B^{max}} \times B(C_i),$$

where $V(C_i) \in [0, U^{max}]$ for $B(C_i) \in [0, B^{max}]$, and U^{max} is the maximum economic value in the problem.

- Is firm *i* doing a good job? We need to evaluate firm *i* using a fitness function $F(C_i)$.
- The profit function is used as the fitness function in this case:

$$F(C_i) = \pi(V(C_i))$$

= $\pi(q_i) = (a - bq_i)q_i - (d + eq_i).$

In this case,

$$F(C_i) = \pi(V(C_i))$$

= $\pi(29.52) = (200 - 4(29.52))(29.52) - (50 + 40(29.52))$
= 1187.48.

• The maximum profit is (for q = 20):

$$F^{max} = \pi(q^*) = \pi(20) = 1550.$$

・ロット 4回ッ 4回ッ 4回ッ 4日マ

A Simple Profit Maximization Problem The GA Operators MATLAB Codes Simulations

The GA Operators Reproduction \Rightarrow Evolutionary Dynamics

- Reproduction is a genetic operator where an individual chromosome is copied from the previous population to a new population.
- The probability of being drawn for each chromosome is calculated based on the fitness value.
 - Higher fitness value \Rightarrow higher probability of being drawn to the new population.
- The relative fitness function is:

$$R(C_{i,t}) = \frac{F(C_{i,t})}{\sum_{m=1}^{M} F(C_{m,t})},$$

where $\sum_{i \in M} R(C_{i,t}) = 1$.

 The relative fitness value R(C_{i,t}) gives us the probability chromosome i is copied to the new population at time t+1.

```
EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm
```


A Simple Profit Maxim The GA Operators MATLAB Codes Simulations

The GA Operators Crossover

- A crossover point will be randomly chosen to separate each chromosome into two sub-strings.
- Two "offspring" chromosomes will be formed by swapping the right-sided parents' substrings with probability κ .

Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks A Simple Profit Maximization Probler The GA Operators MATLAB Codes Simulations

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

<ロ> (四) (四) (三) (三) (三)

Evolutionary Dynamics: Genetic Algorithm

The GA Operators Reproduction

- What if $F(C_{i,t})$ is negative for some firm *i*? (a negative profit?)
- Goldberg (1989) proposes a scaled relative fitness function:

$$S(C_{i,t}) = \frac{F(C_{i,t}) + A}{\sum_{m=1}^{M} [F(C_{m,t}) + A]} = \frac{F(C_{i,t}) + A}{\sum_{m=1}^{M} F(C_{m,t}) + MA}$$

where A is a constant such that $A > -\min_{C_i \in P_t} F(C_{i,t})$.

Assuming that there are M = 6 individuals in the population (each chromosome has 20 genes) :

[6x20)] matrix
201:	10010100100110101010
:02:	10101010010001101100
203:	01101100101000110110
:04	11011001010001110100
205:	10110010111101100101
206:	10110101111011001010

EITM Summer Institute (2015)

The GA Operators

Therefore, there are 20 - 1 = 19 possible positions for crossover. We randomly pick a position for each pair of chromosomes.

The GA Operators

Break the population into 3 groups. Randomly pick a position between Position 1 and Position 19

C01: 1001010010011010101 C02: 10101010010001101100 C03: 01101100101000110110 C04: 11011001010001110100

C05: 10110010111101100101 C06: 1011010111101100101 Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise

A Simple Profit Maximization Problem **The GA Operators** MATLAB Codes Simulations

The GA Operators Crossover

Given $\kappa = 0.3$, the position for the 1st pair is 8, the 2nd pair is 3, and the 3rd is 0.

C01: 100101001_01_1010100 [Position 8] C02: 101010100100_01101100

C03: 01101100101000110_110 [Position 3] C04: 11011001010001110_100

C05: 10110010111101100101 [Position 0] C06: 10110101111011001010

- C01: 100101001001_01101100 [Position 8] C02: 101010100100_1010100
- C03: 01101100101000110_100 [Position 3] C04: 11011001010001110_110
- C05: 10110010111101100101_ [Position 0] NO CROSSOVER C06: 10110101111011001010_

- Every gene within a chromosome has a small probability, μ , changing in value, independent of other positions.

▲日▼▲□▼▲目▼▲目▼ 目 のへの

MATLAB Codes

Outline

Macro-Simulation

• Cobweb Model

Conclusions

• The GA Learning

• MATLAB Codes

• Simulations

2 Background

%Initial Population Parameters: 6 %ind = number of agents(chromosomes) in a population 7 8 %bit = number of genes in each agent(chromosome) 9 %Umax = the upper bound of the real economic values • What is Agent-based Modeling? %epsilon = the value for the scaled relative fitness 10 11 %kappa = Probability of Crossover • Genetic Algorithm - The Mechanism of Learning 12 %mu = Probability of Mutation 13 %time = number of generations(simulations) 3 Arifovic (1994): Cobweb Model under GA 14 ind = 200; 15 bit = 32; Umax = 50;16 epsilon = .1; 17 -18 kappa = 0.6; %Arifovic (1994) 19 mu = 0.0033; %Arifovic (1994) 20 time = 500; 21 4 A Simple GA Exercise %Profit function parameters 22 % Demand function: p = a - bq 23 • A Simple Profit Maximization Problem 24 & Cost function: c = d + eq25 % Profit function: profit = (a-bq)q - (d+eq) • The GA Operators 26 % Optimal level of output: q* = (a-e)/2b 27 a = 200; b = 4;28 -29 d = 50; 30 e = 40; 31 qstar = (a-e)/(2*b);5 Concluding Remarks ▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで ▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

MATLAB Codes

Creating an Initial Population

66		Walue Euroption and Definitions
00		svalue runction and Definitions
67	-	Bmax = (2 .^ bit) - 1;
68	-	<pre>m = ind;</pre>
69	-	n = bit;
70		
71		<pre>%Generate the Initial Population: "gen"</pre>
72	-	<pre>gen = rand(m,n);</pre>
73	-	<pre> . for i=1:m </pre>
74	-	for j=1:n
75	-	<pre>if gen(i,j)<.5;</pre>
76	-	gen(i,j)=0;
77	-	else
78	-	gen(i,j)=1;
79	-	end
80	-	- end
81	-	end

Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

Background Arifovic (1994): Cobweb Model under GA

Defining Parameter Values

A Simple GA Exercise

MATLAB Codes

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

MATLAB Codes

Converting Binary Value into Numerical Value

```
87
       %Calculate the real value of each chromosome: "BC"
88 -
       m2 = 2 * ones(n,1);
89 -
      □ for i=1:n
90 -
           m2(i,1)=m2(i,1).^(n-i);
       end
91 -
92
93 -
       BC = ones(m, 1);
94 -
      □ for i=1:m
95 -
           BC(i,1)=gen(i,:) * m2; %Converting Binary # to Decimal # for each i
       end
96 -
97

    For example,
```

$$B(0100101110) = 0 \times 2^9 + 1 \times 2^8 + 0 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 302.$$

▲日▼▲□▼▲目▼▲目▼ 目 のへの

Notations under the GA

• An economic value for a chromosomes $V(C_i)$ based on the following value function:

$$V(C_i) = \frac{U^{max}}{B^{max}} \times B(C_i).$$

MATLAB Codes

• For example, given the maximum output level is $U^{max} = 100$, and $C_i = 0100101110$ (i.e., $B(C_i) = 302$), we can calculate the output level for firm *i*:

$$q_i = V(C_i) = \frac{100}{1023} \times 302 = 29.52 \approx 30.$$

A Simple Profit Maximization Problem The GA Operators MATLAB Codes Simulations

Notations under the GA

- Is firm *i* doing a good job? We need to evaluate firm *i* using a fitness function F(C_i).
- The profit function is used as the fitness function in this case:

$$F(C_i) = \pi(V(C_i)) = \pi(q_i) = (a - bq_i) q_i - (d + eq_i)$$

In this case,

$$F(C_i) = \pi(V(C_i))$$

= $\pi(29.52) = (200 - 4(29.52))(29.52) - (50 + 40(29.52))$
= 1187.48.

• The maximum profit is (for q = 20):

$$F^{max} = \pi(q^*) = \pi(20) = 1550.$$

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

EITM Summer Institute (2015)

A Simple Profit Maximization Problem The GA Operators MATLAB Codes Simulations

Evolutionary Dynamics: Genetic Algorithm

▲ロト ▲母 ト ▲目 ト ▲目 ト ● のへで

- Reproduction is a genetic operator where an individual chromosome is copied from the previous population to a new population.
- The probability of being drawn for each chromosome is calculated based on the fitness value.
 - Higher fitness value \Rightarrow higher probability of being drawn to the new population.
- The relative fitness function is:

$$R(C_{i,t}) = \frac{F(C_{i,t})}{\sum_{m=1}^{M} F(C_{m,t})},$$

where $\sum_{i \in M} R(C_{i,t}) = 1$.

• The relative fitness value $R(C_{i,t})$ gives us the probability chromosome *i* is copied to the new population at time t + 1.

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

122		This is the code for Reproduction
123	-	norm_fit 🗮 SC
124	-	<pre>selected = rand(size(SC))</pre>
125	-	<pre>sum_fit = 0;</pre>
126	-	<pre> for i=1:length(SC) </pre>
127	-	<pre>sum_fit = sum_fit + norm_fit(i)</pre>
128	-	index 💂 find(selected <sum_fit)< td=""></sum_fit)<>
129	-	<pre>selected(index) = i*ones(size(index))</pre>
130	-	end
131		gon = gon(gologted +)

131 - gen = gen(selected,:)
132

Goldberg (1989) proposes a scaled relative fitness function:

$$S(C_{i,t}) = \frac{F(C_{i,t}) + A}{\sum_{m=1}^{M} [F(C_{m,t}) + A]} = \frac{F(C_{i,t}) + A}{\sum_{m=1}^{M} F(C_{m,t}) + MA},$$

where A is a constant such that $A > -\min_{C_i \in P_t} F(C_{i,t})$.

コン ふむと くほと くけい

Background Arifovic (1994): Cobweb Model under GA Background Arifovic (1994): Cobweb Model under GA MATLAB Codes MATLAB Codes A Simple GA Exercise A Simple GA Exercise Concluding Remarks Concluding Remarks The GA Operators The GA Operators Reproduction Crossover >> norm_fit = SC norm_fit = 0.1283 0.1230 0.1182 0.0000 133 %This is the code for Crossover (Point & Pairwise) 0.1276 134 %size(gen,1) = ind = number of individual %size(gen,2) = bit = number of genes 0.0785 135 0.0780 136 sites _ ceil(rand(size(gen,1)/2,1)*(size(gen,2)-1)) 0.1271 137 sites = sites.*(rand(size(sites))<kappa)</pre> 0.0927 138 p for i = 1:length(sites) 0.1266 139 newgen([2*i-1 2*i],:) = [gen([2*i-1 2*i],1:sites(i)) ... gen([2*i 2*i-1],sites(i)+1:size(gen,2))] 140 >> selected 141 end selected = 142 genmnewgen 143 10 3 5 1 1 1 10 10 5 ▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで ▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm lacro-Simulati /lacro-Simulati MATLAB Codes MATLAB Codes A Simple GA Exercise A Simple GA Exercise **Concluding Remarks** Concluding Remarks The GA Operators The GA Operators Crossover Mutation >> rand(size(gen,1)/2,1) ans = 0.6378 0.3878 0.8372 0.7663 144 %This is the code for Mutation 0.1256 145 mutated = find(rand(size(gen))<mu)</pre> 146 newgen 💻 gen

147 -

148 -

149 -

150

newgen(mutated) = 1-gen(mutated)

gen=newgen;

ngen=newgen;

>> size(gen,2)-1

ans =

31

>> ceil(rand(size(gen,1)/2,1)*(size(gen,2)-1))

ans =

- ▲ ロ ト ▲ 国 ト ▲ 国 ト → 国 ト うへぐ

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ つへぐ

MATLAB Codes

The GA Operators **Mutation**

mutated	-													
3 43														
newgen =														
1	0	1	1	1	1	1	0							
1	1	0	0	1	0	0	1							
0	1	1	1	0	0	1	1							
0	1	0	0	0	1	0	1							
ő	ō	ő	1	1	1	ŏ	i							
ő	1	1	1	ō	ō	ĭ	î							
ō	ī	ī	ī	ō	ō	ī	ī							
0	1	0	0	0	1	0	1							
1	0	0	0	0	0	0	0							
newgen =														
1	0	1	1	1	1	1	0							
1	i	ō	ō	1	ō	ō	i							
1	1	1	1	1	0	1	1							
0	1	1	1	0	0	1	1							
0	1	0	0	0	1	0	1							
0	0	0	1	1	1	0	1							
0	1	1	1	0	0	1	1							
0	1	1	1	0	0	1	1							
1	1	0	0	0	1	0	1				. = .	. = .	-	
1	U	v	U	U	U	v	0		101		1 = 1	1 = 1	-=	*)4(*
		EITM	Summ	er Insti	tute (2	015)	Evo	olutionar	y Dynan	nics: Ge	netic Alg	orithm		
						.,								

Arifovic (1994): Cobweb Model under GA A Simple GA Exercise uding Remarks

The GA Operators MATLAB Codes Simulations

Outline

- 1 Macro-Simulation
- 2 Background
 - What is Agent-based Modeling?
 - Genetic Algorithm The Mechanism of Learning

3 Arifovic (1994): Cobweb Model under GA

- Cobweb Model
- The GA Learning
- Conclusions

4 A Simple GA Exercise

• A Simple Profit Maximization Problem

EITM Summer Institute (2015)

A Simple GA Exercise

Concluding Remarks

Arifovic (1994): Cobweb Model under GA

The Basic GA Simulations

The Output Level over time

27

26

25

24

22

21

20

19

18

17[∟] 0

50

100

150

200

Output level 23

- The GA Operators
- MATLAB Codes
- Simulations
- **5** Concluding Remarks

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで Evolutionary Dynamics: Genetic Algorithm

Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

Simulations

The Basic GA Simulations

Market Parameters:

- Demand: a = 200, and b = 400.
- Supply: d = 50, and e = 40.
- Optimal output: $q^* = 20$.

• GA Parameters:

- M = 200 (200 genetic agents)
- L = 16, therefore $B^{max} = 65535$.
- $U^{max} = 50$ (maximum output $q^{max} = 50$)
- $\kappa = 0.3$ (probability of crossover)
- $\mu = 0.0033$ (probability of mutation)
- t = 500 (500 generations)

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

Time EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

250

300

350

400

(ㅁ) 《圖》 《문》 《문》

450

500

- 2

The GA Operators MATLAB Codes

Simulations

Simulations

The Basic GA Simulations The Standard Deviation of Output Level over time

Simulations

The Augmented GA Simulations The Output Level over time

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

・ロト ・回 ト ・ヨト ・ヨー うへぐ

EITM Summer Institute (2015)

Evolutionary Dynamics: Genetic Algorithm

- Why do we use the GA (or ABM in general) for political science / economics research??
 - Some models are mathematically intractable (we cannot find a closed-form equilibrium).
 - No strong assumptions imposed (such as, efficient markets, rational agents, representative agent hypothesis).
 - It allows non-linearity in a theoretical model.
 - It is relatively easier to capture equilibrium (equilibria) in a multi-national, multi-sector model.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Learn GA Learning?

Genetic Algorithms in Search, Optimization, and Machine Learning (David E. Goldberg, 1989)

Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

Learn GA Learning?

Learning in Economics: Analysis and Application of Genetic Algorithms (Thomas Riechmann, 2001)

Macro-Simulation Background Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

Learn GA Learning?

Adaptive Learning by Genetic Algorithms: Analytical Results and Applications to Economic Models (Herbert Dawid, 2012)

Arifovic (1994): Cobweb Model under GA A Simple GA Exercise Concluding Remarks

Thank You.

Questions?

・ロト ・日 ・ モー・ モー・ シック

Sources of Figures

- Evolutionary figure: http://mme.uwaterloo.ca/~fslien/ga/ga.html
- Human chromosome: http://ghr.nlm.nih.gov/handbook/illustrations/chromosomes.jpg
- Genetic mutation: http://farm3.static.flickr.com/2350/1583336323_33661151a2_o.jpg
- Genetic crossover: http://cnx.org/content/m45471/latest/Figure_08_03_06.jpg

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ◆ ④ ◆ ④