ABM has been considered as a bottom-up approach modeling behaviors of a group of agents, rather than a representative agent, in a system.

The representative-agent hypothesis allows for greater ease in solution procedures.

- It is easier to find the equilibrium (relatively...).
- This is usually called the analytical optimization.
LeBaron and Tesfatsion (2008, 246): “Potentially important real-world factors such as subsistence needs, incomplete markets, imperfect competition, inside money, strategic behavioral interactions, and open-ended learning that tremendously complicate analytical formulations are typically not incorporated”

One important element of ABM is that it allows the possibility of agents’ interactions in micro levels with the assumption of bounded-rationality or imperfect information.

Given agents’ heterogenous characteristics and their interactions at the micro level, we can simulate the system and observe changes in the macro level over time according to the system-simulated data.

- Poli. Sci. (Bendor, Diermeier and Ting, APSR 2003; Fowler, JOP 2006)
 - BDT (2003):
 - A computational model by assuming that voters are adaptively rational — voters learn to vote or to stay home in a form of trial-and-error.
 - Voters are reinforced to repeat an action (e.g., vote) in the future given a successful outcome today.
 - The turnout rate is substantially higher than the predictions in rational choice models.
 - Fowler (2006):
 - He revises the BDT model by including habitual voting behavior.
 - Fowler finds his behavioral model is a better fit to the same data BDT use.

- Economics
 - Econ. Growth - Beckenbach, et al. (JEE, 2012) - Novelty creating behavior and sectoral growth effects.
 - Policy Making - Arifovic, Bullard and Kostyshyna (EJ, 2013) - The effects of social learning in a monetary policy context.
 - The Taylor Principle is widely regarded as the necessary condition for stable equilibrium.
 - However, they show that it is not necessary for convergence to REE minimum state variable (MSV) equilibrium under genetic algorithm learning.
We introduce Arifovic (1994) as an example to investigate if the macro-level stability condition (the cobweb theorem) is necessary for a stable cobweb economy under GA. We would also like to see how to apply the genetic algorithm on a simple economic model.

Important terms:
- Genes, Chromosomes, and Populations
 - Chromosomes: Genetic individuals making heterogeneous decisions
 - Genes: Elements of a decision that a genetic individual makes
 - Population: A group of genetic individuals with heterogeneous decisions

The genetic algorithm (GA), developed by John Holland (1970), is considered one of the evolutionary algorithms inspired by natural evolution with a core concept of “survival of the fittest”.

The GA describes the evolutionary process of a population of genetic individuals with heterogeneous beliefs in response to the rules of nature.
This Presentation

We introduce Arifovic (1994) as an example to investigate if the macro-level stability condition (the cobweb theorem) is necessary for a stable cobweb economy under GA.

We would also like to see how to apply the genetic algorithm on a simple economic model.

Important terms:
- Reproduction, Mutation, and Crossover
 - Reproduction: An individual chromosome is copied from the previous population to a new population.
 - Mutation: One or more gene within an individual chromosome changes value randomly.
 - Crossover: Two randomly drawn chromosomes exchange parts of their genes.
What is Agent-based Modeling?

Genetic Algorithm - The Mechanism of Learning

Computational GA - Genes, Chromosomes, Population

The computational GA Environment can be presented as follows:

- **Chromosome**
 - C01: 00101001000101011010101010100101010101010101010
 - C02: 0101001001010100010101010101010101010101010101

- **Genes**
 - C01: 00101001000101011010101010100101010101010101010
 - C02: 0101001001010100010101010101010101010101010101

- **Population**

Computational GA - Mutation

The mutation which occurs when one or more gene within an individual chromosome changes value randomly:
Agents may change their strategies suddenly through innovations.

- C01: 00101001000101011010101010100101010101010101010
 - C01: 0101001001010100010101010101010101010101010101

- C01: 00101001000101011010101010100101010101010101010
 - C01: 0101001001010100010101010101010101010101010101

Computational GA - Crossover

The crossover which occurs when two randomly drawn chromosomes exchange parts of their genes:
Agents work with others to innovate or develop a new strategy.

- C01: 00101001000101011010101010100101010101010101010
 - C02: 101001010100101001010010101000101010111010100

- C01: 00101001000101011010101010100101010101010101010
 - C02: 101001010100101001010010101000101010111010100

- C01: 00101001000101011010101010100101010101010101010
 - C02: 101001010100101001010010101000101010111010100

Computational GA - Operational Flowchart

- Start at $i = 0$
- Generate an initial population
- Evaluation based on the fitness function
- Is the stopping condition met?
 - No: Selection from the previous population at i
 - Yes: Crossover on the new population at i
- Reproduce a new population at i
- Mutation on the new population at i
- Stop
The cobweb model- An Introduction

- It is a classic model which illustrates the dynamic process of prices in agricultural markets (Kaldor, 1934).
- Due to a lag between planting and harvesting, farmers cannot adjust the amount of agricultural output immediately to fulfill the demand in the market.
- As a result, farmers make their planting decisions today based on the predicted (or forecasted) price of the agricultural product in the next period.
- If farmers expect the price is high in the next period, they would like to plant more today to make more money tomorrow, and vice versa. (The Law of Supply.)

The cobweb model- An Introduction

- Assuming that farmers “forecast” the price in the next period based on the price they observe today, that is, $P_{t+1} = P_t$.
- If the current price level P_t is high (and is higher than the equilibrium price P^*, which is assumed to be unknown for the farmers). It can be written as: $P_{t+1} > P^*$.
 - At time $t = 1$, farmers would be very happy to plant more today so that they will have more output (Q_{t+1}) which can be sold at the high price they expect in the next period.
 - At time $t = 2$, since all farmers did the same in period 1, there are too much output available, which creates a “surplus” in the market, the price drops sharply at $t = 2$ due to the excess supply, and it goes below the equilibrium: $P_t < P^* < P_{t+1}$.

- What would be the planting decision for the farmers at $t = 2$?
 - At time $t = 2$, since they observe the today’s price is low, they would expect the price will also be low in the next period ($t = 3$). Therefore, they decide to plant less today...
 - At time $t = 3$, since all farmers again are doing the exact same thing, the total output level turns out to be very low this time. $Q_{t+1} < Q_{t+2}$ (shortage!). Therefore, the price jumps up!

- What would be the planting decision for the farmers at $t = 3$ now?
 - At time $t = 3$, since they observe the today’s price is now high again, they would expect the price will also be high in the next period ($t = 4$). Therefore, they decide to plant more today...

- This story keeps going...
The cobweb model - An Introduction

Arifovic (1994) assumes each firm i chooses a production level q_{it} to maximize its expected profit π_{it}^e.

- The cost function for firm i is:
 $$C_{it} = aq_{it} + \frac{1}{2}bmq_{it}^2,$$
 where $a, b > 0$.

- Given the expected price of the good P_t^e at time t, firm i is maximizing the following profit function:
 $$\pi_{it}^e = P_t^e q_{it} - C_{it}(q_{it}) = P_t^e q_{it} - aq_{it} - \frac{1}{2}bmq_{it}^2.$$

- The first order condition for each firm i is:
 $$P_t^e - a - bmq_{it} = 0 \Rightarrow q_{it} = \frac{P_t^e - a}{bm}.$$
The cobweb model - an mathematical illustration

- Assuming all firms are identical so that \(q_{it} = q_t \quad \forall i \), the aggregate supply in the market is:

\[
Q_t = \sum_{i=1}^{m} q_{it} = m q_t = \frac{P_t^e - a}{b}, \tag{1}
\]

where \(m \) = number of firms in the market.
- Assuming that the market demand is a linear function:

\[
P_t = \gamma - \theta Q_t, \tag{2}
\]

where \(Q_t = \sum q_{it} \).
- In equilibrium where (1)=(2), we can derive the following law of motion for the price level:

\[
\frac{\gamma - P_t}{\theta} = \frac{P_t^e - a}{b} \quad \Rightarrow \quad P_t = \frac{\gamma b + a \theta}{b} - \frac{\theta}{b} P_t^e.
\]

The Cobweb Theorem and Other Expectations Formations

- The dynamics of the price level:

\[
P_t = \frac{\gamma b + a \theta}{b} - \frac{\theta}{b} P_t^e.
\]

- According to Cobweb Theorem, the model is stable if \(\theta / b < 1 \), that is, \(\theta < b \). However, the model is unstable if \(\theta / b > 1 \), that is, \(\theta > b \).
- Arifovic discusses three types of expectations formations:
 - Static expectations (i.e., \(P_t^e = P_{t-1} \)):
 - The model is stable only if \(\theta / b < 1 \).
 - Simple adaptive expectations (\(P_t^e = \frac{1}{T} \sum_{t=0}^{T-1} P_s \)):
 - The model is stable in both cases (Carlson, 1968).
 - Least squares learning (\(P_t^e = \beta_t P_{t-1}, \beta_t = \text{OLS coefficient} \)):
 - The model is stable only if \(\theta / b < 1 \) (Bray and Savin, 1986).

The Cobweb Theorem and Simulation

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Stable Case ((\theta / b < 1))</th>
<th>Unstable Case ((\theta / b > 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)</td>
<td>2.184</td>
<td>2.296</td>
</tr>
<tr>
<td>(\theta)</td>
<td>0.0152</td>
<td>0.0168</td>
</tr>
<tr>
<td>(a)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(b)</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>(m)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>(P^*)</td>
<td>1.12</td>
<td>1.12</td>
</tr>
<tr>
<td>(Q^* - mq^*)</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 12.1: Cobweb Model Parameters

The Cobweb Theorem and Simulation - Static

Static expectations (i.e., \(P_t^e = P_{t-1} \)):

(Stable Case: \(\theta / b < 1 \))

(Unstable Case: \(\theta / b > 1 \))
The Cobweb Theorem and Simulation - Adaptive

Simple adaptive expectations ($P^e_t = \frac{1}{t} \sum_{s=0}^{t-1} P_s$):

(Stable Case: $\frac{b}{b} < 1$)

(Stable Case: $\frac{b}{b} > 1$)

The Cobweb Theorem and GA

WHAT ABOUT THE GA LEARNING?

DOES THE COBWEB THEOREM HOLD UNDER THE GA?

The Cobweb Theorem and Simulation - Least Squares

Least squares learning ($P^e_t = \beta_t P_{t-1}$):

(Stable Case: $\frac{b}{b} < 1$)

(Unstable Case: $\frac{b}{b} > 1$)
The Basic GA and Arifovic’s New GA Operator

- Arifovic (1994) simulates the cobweb model based on three basic genetic operators in the GA simulations:
 - (1) reproduction, (2) mutation, and (3) crossover.
- She also introduces a new operator, called election, in the simulations.
- Election is an operator to “examine” the fitness of newly generated (or offspring) chromosomes and then compare them with their parent chromosomes.

- The Rules of Election:
 - Both offspring chromosomes are elected to be in the new population at time $t + 1$ if $E_t \left(V_{offspring} \right) > V_{Parent}$.
 - However, if only one new chromosome has a higher fitness value than their parents, the one with lower value will not enter the new population, but one of the parents with a higher values stays in the new population.
 - If both new chromosomes have lower values than their parents $E_t \left(V_{offspring} \right) < V_{Parent}$, they cannot enter but their parents stay in the new population.

GA Learning Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Stable Case ($\xi < 1$)</th>
<th>Unstable Case ($\xi > 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>2.184</td>
<td>2.206</td>
</tr>
<tr>
<td>θ</td>
<td>0.0152</td>
<td>0.0168</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>m</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

$P^* = \frac{m}{Q^*}$

Table 12.1: Cobweb Model Parameters

<table>
<thead>
<tr>
<th>Set</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crossover rate: κ</td>
<td>0.6</td>
<td>0.6</td>
<td>0.75</td>
<td>0.75</td>
<td>0.9</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Mutation rate: μ</td>
<td>0.0033</td>
<td>0.033</td>
<td>0.0033</td>
<td>0.033</td>
<td>0.0033</td>
<td>0.033</td>
<td>0.0033</td>
</tr>
</tbody>
</table>

Table 12.2: Crossover and Mutation Rates
Arifovic (1994) introduces the GA procedure as an alternative learning mechanism. This alternative learning mechanism mimics social behavior: imitation, communication, experiment, and examination.

Arifovic uses the GA simulated data to compare with the data generated in human-subject experiments (Wellford, 1989).

In an unstable case of the cobweb model, the divergent patterns do not happen under both GA learning and human-subject experiments.

Price and quantity fluctuate around the equilibrium in basic GA learning and human-subject experiments.
Outline

1. Macro-Simulation
2. Background
 - What is Agent-based Modeling?
 - Genetic Algorithm - The Mechanism of Learning
3. Arifovic (1994): Cobweb Model under GA
 - Cobweb Model
 - The GA Learning
 - Conclusions
4. A Simple GA Exercise
 - A Simple Profit Maximization Problem
 - The GA Operators
 - MATLAB Codes
 - Simulations
5. Concluding Remarks

Notations under the GA

- Chromosome C_i consists of a set of 0 and 1, where L is the length of a chromosome (the number of genes).
- $B_{\text{max}}(C_i) = 2^L - 1$ represents the maximum numerical value of a chromosome with the length L.
 - For example, if $L = 10$, the maximum value of a chromosome: $B(1111111111) = 2^{10} - 1 = 1023$.
- We can use the B operator to compute a numerical value of a chromosome (e.g., $C_i = 0100101110$):

 $B(0100101110) = 0 \times 2^9 + 1 \times 2^8 + 0 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 302$.

Profit Maximization

- Profit function: $\pi = p \times q - c(q)$.
- Demand: $p = a - bq$.
- Supply (cost function): $c = d + eq$.
- Maximizing profit: $\max_q \pi = (a - bq)q - (d + eq)$.
- Optimal level of output: $q^* = (a - e)/2b$.

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm
Notations under the GA

- Assume that there are \(M = 8 \) genetic individuals. For \(L = 10 \), we can generate an initial genetic population \(P_0 \) in an \(M \times L \) matrix (that is, \(8 \times 10 \) matrix):
 - For example:

 \[
 P_0 = \begin{bmatrix}
 0100101110 \\
 1110101010 \\
 0101110100 \\
 0100001010 \\
 1110101000 \\
 0101101101 \\
 1100101010 \\
 0100011100
 \end{bmatrix}
 \]

- According to the problem of profit maximization, if \(a = 200 \), \(b = 4 \), and \(e = 40 \), then \(q^* = 20 \).
- In this case, the maximum value of a chromosome can be too large for this problem (\(B_{\text{max}} = 1023 \)).
- We can define a maximum economic value for a chromosome \(V(C_i) \) based on the following value function:
 \[
 V(C_i) = \frac{U_{\text{max}}}{B_{\text{max}}} \times B(C_i),
 \]
 where \(V(C_i) \in [0, U_{\text{max}}] \) for \(B(C_i) \in [0, B_{\text{max}}] \), and \(U_{\text{max}} \) is the maximum economic value in the problem.

- Is firm \(i \) doing a good job? We need to evaluate firm \(i \) using a fitness function \(F(C_i) \).
- The profit function is used as the fitness function in this case:
 \[
 F(C_i) = \pi(V(C_i)) = \pi(q_i) = (a - bq_i)q_i - (d + eq_i).
 \]
- In this case,
 \[
 F(C_i) = \pi(V(C_i)) = \pi(29.52) = (200 - 4(29.52))(29.52) - (50 + 40(29.52)) = 1187.48.
 \]
- The maximum profit is (for \(q^* = 20 \)):
 \[
 F_{\text{max}} = \pi(q^*) = \pi(20) = 1550.
 \]

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm
The GA Operators

Reproduction

- Reproduction is a genetic operator where an individual chromosome is copied from the previous population to a new population.
- The probability of being drawn for each chromosome is calculated based on the fitness value.
 - Higher fitness value → higher probability of being drawn to the new population.
- The relative fitness function is:
 \[R(C_i, t) = \frac{F(C_i, t)}{\sum_{m=1}^{M} F(C_m, t)}, \]
 where \(\sum_{i=M} R(C_i, t) = 1 \).
- The relative fitness value \(R(C_i, t) \) gives us the probability chromosome \(i \) is copied to the new population at time \(t+1 \).

Crossover

- A crossover point will be randomly chosen to separate each chromosome into two sub-strings.
- Two “offspring” chromosomes will be formed by swapping the right-sided parents’ substrings with probability \(\kappa \).

MATLAB Codes

Simulations

A Simple Profit Maximization Problem

The GA Operators

Reproduction

- What if \(F(C_i, t) \) is negative for some firm \(i \)? (a negative profit?)
- Goldberg (1989) proposes a scaled relative fitness function:
 \[S(C_i, t) = \frac{F(C_i, t) + A}{\sum_{m=1}^{M} [F(C_m, t) + A]} = \frac{F(C_i, t) + A}{\sum_{m=1}^{M} F(C_m, t) + MA}, \]
 where \(A \) is a constant such that \(A > -\min_{C_i \in P_t} F(C_i, t) \).

Crossover

Assuming that there are \(M = 6 \) individuals in the population (each chromosome has 20 genes):
Therefore, there are $20 - 1 = 19$ possible positions for crossover. We randomly pick a position for each pair of chromosomes.

Break the population into 3 groups. Randomly pick a position between Position 1 and Position 19

C01: 10010100100110101010
C02: 10101010010001101010
C03: 01101100100110101010
C04: 11010010100011101010
C05: 10110010111011010101
C06: 10110101110110010101

This is a new population after crossover.

C01: 100101001001_01101100 [Position 8]
C02: 101010100100_01101010
C03: 0110110010001100_01101100 [Position 3]
C04: 1101001010001110_1100
C05: 10110010111011010101 [Position 0]
C06: 10110101110110010101

Given $\kappa = 0.3$, the position for the 1st pair is 8, the 2nd pair is 3, and the 3rd is 0.

C01: 10010100100110101010_10101010 [Position 8]
C02: 101010100100_01101100
C03: 0110110010001100_110 [Position 3]
C04: 1101001010001110_100
C05: 10110010111011010101 [Position 0]
C06: 10110101110110010101

\bullet Every gene within a chromosome has a small probability, μ, changing in value, independent of other positions.
For example,

\[
B(0100101110) = 0 \times 2^9 + 1 \times 2^8 + 0 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 302.
\]
An economic value for a chromosome $V(C_i)$ based on the following value function:

$$V(C_i) = \frac{U_{\text{max}}}{B_{\text{max}}} \times B(C_i).$$

For example, given the maximum output level is $U_{\text{max}} = 100$, and $C_i = 0100101110$ (i.e., $B(C_i) = 302$), we can calculate the output level for firm i:

$$q_i = V(C_i) = \frac{100}{1023} \times 302 = 29.52 \approx 30.$$
The GA Operators

Reproduction

```
>> norm_fit = SC
norm_fit =
0.1283
0.1230
0.1185
0.0906
0.0765
0.0765
0.0717
0.0765
0.1266
```

```
>> selected
selected =
10
5
3
1
1
10
10
10
10
```

Crossover

```
%This is the code for Crossover (Point & Pairwise)
 size(gen,1) = ind = number of individual
 size(gen,2) = bit = number of genes
 sites = ceil(rand(size(gen,1)/2,1)*(size(gen,2)-1))
 sites = sites.*((rand(size(sites))<kappa)
 for i = 1:length(sites)
     newgen([2*i-1 2*i],:) = [gen([2*i-1 2*i],sites(i)) ...
     gen([2*i 2*i-1],sites(i)+1:site(gen,2))
 end
 gen=newgen
```

Mutation

```
%This is the code for Mutation
 mutated = find(rand(size(gen))<mu)
 newgen = gen
 newgen(mutated) = 1-[gen(mutated)
 gen=newgen;
```

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm
The Basic GA Simulations

- Market Parameters:
 - Demand: \(a = 200, \) and \(b = 400. \)
 - Supply: \(d = 50, \) and \(e = 40. \)
 - Optimal output: \(q^* = 20. \)

- GA Parameters:
 - \(M = 200 \) (200 genetic agents)
 - \(L = 16, \) therefore \(B^\text{max} = 65535. \)
 - \(U^\text{max} = 50 \) (maximum output \(q^\text{max} = 50 \))
 - \(\kappa = 0.3 \) (probability of crossover)
 - \(\mu = 0.0033 \) (probability of mutation)
 - \(t = 500 \) (500 generations)
Why do we use the GA (or ABM in general) for political science / economics research??

- Some models are mathematically intractable (we cannot find a closed-form equilibrium).
- No strong assumptions imposed (such as, efficient markets, rational agents, representative agent hypothesis).
- It allows non-linearity in a theoretical model.
- It is relatively easier to capture equilibrium (equilibria) in a multi-national, multi-sector model.
Learn GA Learning?

Concluding Remarks

Learn GA Learning?

Concluding Remarks

Thank You.
Questions?
Sources of Figures

- Evolutionary figure: http://mme.uwaterloo.ca/~fslien/ga/ga.html
- Genetic mutation: http://farm3.static.flickr.com/2350/158336323_33661151a2_o.jpg
- Genetic crossover: http://cnx.org/content/m45471/latest/Figure_08_03_06.jpg

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm