Lecture Notes

1 Alesina and Rosenthal (1995)

- The model of economic growth is based on an expectations augmented aggregate supply curve:

$$
\hat{y}_{t}=\hat{y}^{n}+\gamma\left(\pi_{t}-\pi_{t}^{e}\right)+\epsilon_{t},
$$

where $\hat{y}_{t}=$ economic growth rate at time $t, \hat{y}^{n}=$ natural rate of economic growth, $\pi_{t}=$ inflation rate at time t.

- The growth model is extended by including an extra component, called competence, which cannot be observed by voters. Therefore,

$$
\epsilon_{t}=\eta_{t}+\xi_{t}
$$

where $\eta_{t}=$ the level of competence at time t, and $\xi_{t}=$ stochastic shocks which are beyond administration control.

- Assume that competence follows an MA(1) process:

$$
\eta_{t}=\mu_{t}+\rho \mu_{t-1}
$$

where $\mu_{t} \sim \operatorname{iid}\left(0, \sigma_{\mu}^{2}\right)$.

- We also assume that voters predict inflation with no systematic errors: $\pi_{t}^{e}=\pi_{t}$. As a result, economic growth performance is associated with voters' uncertainty:

$$
\hat{y}_{t}-\hat{y}^{n}=\epsilon_{t}=\eta_{t}+\xi_{t} .
$$

If the actual economic growth rate $\left(\hat{y}_{t}\right)$ is greater than its natural rate $\left(\hat{y}^{n}\right)$, that is, $\hat{y}_{t}>\hat{y}^{n}$. Therefore, $\epsilon_{t}>0$, which implies that $\eta_{t}+\xi_{t}>0$.

- However, voters are faced with uncertainty in distinguishing the incumbent's competence $\left(\eta_{t}\right)$ from the stochastic economic shocks $\left(\xi_{t}\right)$. Since competence can persist, voters use this property for making forecasts:

$$
\begin{aligned}
\hat{y}_{t}-\hat{y}^{n} & =\epsilon_{t}=\eta_{t}+\xi_{t} \\
& \Rightarrow \epsilon_{t}=\mu_{t}+\rho \mu_{t-1}+\xi_{t} \\
\Rightarrow \hat{y}_{t}-\hat{y}^{n}-\rho \mu_{t-1} & =\mu_{t}+\xi_{t} \\
\Rightarrow \mu_{t}+\xi_{t} & =\hat{y}_{t}-\hat{y}^{n}-\rho \mu_{t-1} .
\end{aligned}
$$

- The previous equation suggests that the votes observe the composite shock $\left(\mu_{t}+\xi_{t}\right)$ based on the observable variables: \hat{y}_{t}, \hat{y}^{n}, and μ_{t-1}. Therefore, voters optimally forecast the level of competence for the next period based on the observable factors:

$$
\begin{aligned}
E_{t}\left(\eta_{+1}\right) & =E_{t}\left(\mu_{t+1}+\rho \mu_{t}\right) \\
& =E_{t}\left(\mu_{t+1}\right)+\rho E\left(\mu_{t} \mid \hat{y}_{t}-\hat{y}^{n}-\rho \mu_{t-1}\right) \\
& =E_{t}\left(\mu_{t+1}\right)+\rho E\left(\mu_{t} \mid \mu_{t}+\xi_{t}\right) \\
& =\rho E\left(\mu_{t} \mid \mu_{t}+\xi_{t}\right)
\end{aligned}
$$

where $E_{t} \mu_{t+1}=0$.

- According to the method of recursive projection, we can show that:

$$
E\left(\mu_{t} \mid \mu_{t}+\xi_{t}\right)=\frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2}+\sigma_{\xi}^{2}}\left(\mu_{t}+\xi_{t}\right) \cdot[\mathrm{WHY} ?]
$$

Since $\mu_{t}+\xi_{t}=\hat{y}_{t}-\hat{y}^{n}-\rho \mu_{t-1}$, we have:

$$
\begin{aligned}
E_{t} \eta_{t+1} & =\rho E\left(\mu_{t} \mid \mu_{t}+\xi_{t}\right) \\
& =\rho \frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2}+\sigma_{\xi}^{2}}\left(\mu_{t}+\xi_{t}\right) \\
& =\rho \frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2}+\sigma_{\xi}^{2}}\left(\hat{y}_{t}-\hat{y}^{n}-\rho \mu_{t-1}\right)
\end{aligned}
$$

How to derive $E\left(\mu_{t} \mid \mu_{t}+\xi_{t}\right)=\frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2}+\sigma_{\xi}^{2}}\left(\mu_{t}+\xi_{t}\right)$?
Voters forecast μ_{t} according to the following linear projection function:

$$
E\left(\mu_{t} \mid \mu_{t}+\xi_{t}\right)=P\left(\mu_{t} \mid \mu_{t}+\xi_{t}\right)=a_{0}+a_{1}\left(\mu_{t}+\xi_{t}\right),
$$

where:

$$
\begin{aligned}
a_{1} & =\frac{\operatorname{cov}\left(\mu_{t}, \mu_{t}+\xi_{t}\right)}{\operatorname{var}\left(\mu_{t}+\xi_{t}\right)} \\
& =\frac{E\left[\mu_{t}\left(\mu_{t}+\xi_{t}\right)\right]}{E\left[\left(\mu_{t}+\xi_{t}\right)\left(\mu_{t}+\xi_{t}\right)\right]} \\
& =\frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2}+\sigma_{\xi}^{2}},
\end{aligned}
$$

where $E\left(\mu_{t} \xi_{t}\right)=0 ; E\left(\mu_{t} \mu_{t}\right)=\sigma_{\mu}^{2}$, and $E\left(\xi_{t} \xi_{t}\right)=\sigma_{\xi}^{2}$; and

$$
a_{0}=E\left(\mu_{t}\right)-a_{1} E\left(\mu_{t}+\xi_{t}\right)=0,
$$

where $E\left(\mu_{t}\right)=E(\xi)=0$. As a result, we can show that:

$$
\begin{aligned}
E\left(\mu_{t} \mid \mu_{t}+\xi_{t}\right) & =a_{0}+a_{1}\left(\mu_{t}+\xi_{t}\right) \\
& =0+\frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2}+\sigma_{\xi}^{2}}\left(\mu_{t}+\xi_{t}\right) \\
& =\frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2}+\sigma_{\xi}^{2}}\left(\mu_{t}+\xi_{t}\right) .
\end{aligned}
$$

2 Clarke and Granato (2004)

- Clarke and Granato (2004) present a model with 3 equations:

$$
\begin{align*}
M_{t} & =a_{1} M_{t-1}+a_{2} E_{t-1} M_{t}+a_{3} F_{t}+u_{1 t}, \text { where } a_{1}, a_{2}>0 \text { and } a_{3}=1 \tag{1}\\
F_{t} & =b_{1} F_{t-1}+b_{2} A_{t}+u_{2 t} \tag{2}\\
A_{t} & =c_{1} A_{t-1}+c_{2}\left(M_{t}-M^{*}\right)+c_{3} F_{t-1} \tag{3}
\end{align*}
$$

Now we plug equation (3) into equation (2), we have:

$$
\begin{align*}
F_{t} & =b_{1} F_{t-1}+b_{2}\left[c_{1} A_{t-1}+c_{2}\left(M_{t}-M^{*}\right)+c_{3} F_{t-1}\right]+u_{2 t} \\
\Rightarrow F_{t} & =b_{1} F_{t-1}+b_{2} c_{1} A_{t-1}+b_{2} c_{2}\left(M_{t}-M^{*}\right)+b_{2} c_{3} F_{t-1}+u_{2 t} \\
\Rightarrow F_{t} & =\left(b_{1}+b_{2} c_{3}\right) F_{t-1}+b_{2} c_{1} A_{t-1}+b_{2} c_{2}\left(M_{t}-M^{*}\right)+u_{2 t} \tag{4}
\end{align*}
$$

- Plug equation (4) into equation (1):

$$
\begin{align*}
M_{t}= & a_{1} M_{t-1}+a_{2} E_{t-1} M_{t}+F_{t}+u_{1 t} \\
M_{t}= & a_{1} M_{t-1}+a_{2} E_{t-1} M_{t}+\left[\left(b_{1}+b_{2} c_{3}\right) F_{t-1}+b_{2} c_{1} A_{t-1}+b_{2} c_{2}\left(M_{t}-M^{*}\right)+u_{2 t}\right]+u_{1 t} \\
M_{t}= & a_{1} M_{t-1}+a_{2} E_{t-1} M_{t}+\left(b_{1}+b_{2} c_{3}\right) F_{t-1}+b_{2} c_{1} A_{t-1}+b_{2} c_{2} M_{t}-b_{2} c_{2} M^{*}+u_{2 t}+u_{1 t} \\
\left(1-b_{2} c_{2}\right) M_{t}= & a_{1} M_{t-1}+a_{2} E_{t-1} M_{t}+\left(b_{1}+b_{2} c_{3}\right) F_{t-1}+b_{2} c_{1} A_{t-1}-b_{2} c_{2} M^{*}+u_{2 t}+u_{1 t} \\
M_{t}= & -\left(\frac{b_{2} c_{2}}{1-b_{2} c_{2}}\right) M^{*}+\left(\frac{a_{1}}{1-b_{2} c_{2}}\right) M_{t-1}+\left(\frac{a_{2}}{1-b_{2} c_{2}}\right) E_{t-1} M_{t}+\left(\frac{b_{2} c_{1}}{1-b_{2} c_{2}}\right) A_{t-1}+ \\
& \left(\frac{b_{1}+b_{2} c_{3}}{1-b_{2} c_{2}}\right) F_{t-1}+\frac{u_{2 t}+u_{1 t}}{1-b_{2} c_{2}} \\
M_{t}= & \Theta_{0}+\Theta_{1} M_{t-1}+\Theta_{2} E_{t-1} M_{t}+\Theta_{3} A_{t-1}+\Theta_{4} F_{t-1}+\epsilon_{t}^{*}, \tag{5}
\end{align*}
$$

where $\Theta_{0}=-\left(\frac{b_{2} c_{2}}{1-b_{2} c_{2}}\right) M^{*}, \Theta_{1}=\frac{a_{1}}{1-b_{2} c_{2}}, \Theta_{2}=\frac{a_{2}}{1-b_{2} c_{2}}, \Theta_{3}=\frac{b_{2} c_{1}}{1-b_{2} c_{2}}, \Theta_{4}=\frac{b_{1}+b_{2} c_{3}}{1-b_{2} c_{2}}$, and $\epsilon_{t}^{*}=\frac{u_{2 t}+u_{1 t}}{1-b_{2} c_{2}}$.

- To solve the rational expectations equilibrium (REE), we first form an expectation of equation (5) at $t-1$, we have:

$$
\begin{align*}
E_{t-1} M_{t} & =\Theta_{0}+\Theta_{1} M_{t-1}+\Theta_{2} E_{t-1} M_{t}+\Theta_{3} A_{t-1}+\Theta_{4} F_{t-1}+E_{t-1} \epsilon_{t}^{*} \\
\Rightarrow\left(1-\Theta_{2}\right) E_{t-1} M_{t} & =\Theta_{0}+\Theta_{1} M_{t-1}+\Theta_{3} A_{t-1}+\Theta_{4} F_{t-1} \\
E_{t-1} M_{t} & =\frac{\Theta_{0}}{1-\Theta_{2}}+\frac{\Theta_{1}}{1-\Theta_{2}} M_{t-1}+\frac{\Theta_{3}}{1-\Theta_{2}} A_{t-1}+\frac{\Theta_{4}}{1-\Theta_{2}} F_{t-1} \tag{6}
\end{align*}
$$

where $E_{t-1} \epsilon_{t}^{*}=0$.

- Plug equation (6) into equation (5):

$$
\begin{align*}
M_{t}= & \Theta_{0}+\Theta_{1} M_{t-1}+\Theta_{2} E_{t-1} M_{t}+\Theta_{3} A_{t-1}+\Theta_{4} F_{t-1}+\epsilon_{t}^{*} \\
M_{t}= & \Theta_{0}+\Theta_{1} M_{t-1}+\Theta_{2}\left(\frac{\Theta_{0}}{1-\Theta_{2}}+\frac{\Theta_{1}}{1-\Theta_{2}} M_{t-1}+\frac{\Theta_{3}}{1-\Theta_{2}} A_{t-1}+\frac{\Theta_{4}}{1-\Theta_{2}} F_{t-1}\right)+ \\
& \Theta_{3} A_{t-1}+\Theta_{4} F_{t-1}+\epsilon_{t}^{*} \\
M_{t}= & \frac{\Theta_{0}}{1-\Theta_{2}}+\frac{\Theta_{1}}{1-\Theta_{2}} M_{t-1}+\frac{\Theta_{3}}{1-\Theta_{2}} A_{t-1}+\frac{\Theta_{4}}{1-\Theta_{2}} F_{t-1}+\epsilon_{t}^{*} \tag{7}
\end{align*}
$$

- Note that equations (2) and (3) are written as follows:

$$
F_{t}=b_{1} F_{t-1}+b_{2} A_{t}+u_{2 t}
$$

and

$$
A_{t}=c_{1} A_{t-1}+c_{2}\left(M_{t}-M^{*}\right)+c_{3} F_{t-1}
$$

Take one period backward, we have:

$$
\begin{equation*}
F_{t-1}=b_{1} F_{t-2}+b_{2} A_{t-1}+u_{2 t-1} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{t-1}=c_{1} A_{t-2}+c_{2}\left(M_{t-1}-M^{*}\right)+c_{3} F_{t-2} \tag{9}
\end{equation*}
$$

Now plug (9) into (8):

$$
\begin{align*}
F_{t-1} & =b_{1} F_{t-2}+b_{2}\left[c_{1} A_{t-2}+c_{2}\left(M_{t-1}-M^{*}\right)+c_{3} F_{t-2}\right]+u_{2 t-1} \\
F_{t-1} & =\left(b_{1}+b_{2} c_{3}\right) F_{t-2}+b_{2} c_{1} A_{t-2}+b_{2} c_{2} M_{t-1}-b_{2} c_{2} M^{*}+u_{2 t-1} \tag{10}
\end{align*}
$$

- Now plug equations (9) and (10) into (7):

$$
\begin{aligned}
& M_{t}= \frac{\Theta_{0}}{1-\Theta_{2}}+\frac{\Theta_{1}}{1-\Theta_{2}} M_{t-1}+\frac{\Theta_{3}}{1-\Theta_{2}}\left[c_{1} A_{t-2}+c_{2}\left(M_{t-1}-M^{*}\right)+c_{3} F_{t-2}\right]+ \\
& \frac{\Theta_{4}}{1-\Theta_{2}}\left[\left(b_{1}+b_{2} c_{3}\right) F_{t-2}+b_{2} c_{1} A_{t-2}+b_{2} c_{2} M_{t-1}-b_{2} c_{2} M^{*}+u_{2 t-1}\right]+\epsilon_{t}^{*} \\
& M_{t}=\left(\frac{\Theta_{0}}{1-\Theta_{2}}-\frac{\Theta_{3}}{1-\Theta_{2}} c_{2}-\frac{\Theta_{4}}{1-\Theta_{2}} b_{2} c_{2}\right) M^{*}+ \\
&\left(\frac{\Theta_{1}}{1-\Theta_{2}}+\frac{\Theta_{3}}{1-\Theta_{2}} c_{2}+\frac{\Theta_{4}}{1-\Theta_{2}} b_{2} c_{2}\right) M_{t-1}+ \\
&\left(\frac{\Theta_{3}}{1-\Theta_{2}} c_{1}+\frac{\Theta_{4}}{1-\Theta_{2}} b_{2} c_{1}\right) A_{t-2}+ \\
& {\left[\frac{\Theta_{3}}{1-\Theta_{2}} c_{3}+\frac{\Theta_{4}}{1-\Theta_{2}}\left(b_{1}+b_{2} c_{3}\right)\right] F_{t-2}+} \\
& M_{t}= \frac{\Theta_{4}}{1-\Theta_{2}} u_{2 t-1}+\epsilon_{t}^{*} \\
& \Pi_{1}+\Pi_{2} M_{t-1}+\Pi_{3} A_{t-2}+\Pi_{4} F_{t-2}+\xi_{t}^{\prime} .
\end{aligned}
$$

- Therefore, we can see that:

$$
\Pi_{2} \equiv \frac{\Theta_{1}}{1-\Theta_{2}}+\frac{\Theta_{3}}{1-\Theta_{2}} c_{2}+\frac{\Theta_{4}}{1-\Theta_{2}} b_{2} c_{2}
$$

$$
\begin{aligned}
& \Pi_{2}=\frac{a_{1} /\left(1-b_{2} c_{2}\right)}{1-\left[a_{2} /\left(1-b_{2} c_{2}\right)\right]}+\frac{b_{2} c_{1} /\left(1-b_{2} c_{2}\right)}{1-\left[a_{2} /\left(1-b_{2} c_{2}\right)\right]} c_{2}+\frac{\left(b_{1}+b_{2} c_{3}\right) /\left(1-b_{2} c_{2}\right)}{1-\left[a_{2} /\left(1-b_{2} c_{2}\right)\right]} b_{2} c_{2} \\
& \Pi_{2}=\frac{a_{1}}{1-b_{2} c_{2}-a_{2}}+\frac{b_{2} c_{1} c_{2}}{1-b_{2} c_{2}-a_{2}}+\frac{\left(b_{1}+b_{2} c_{3}\right) b_{2} c_{2}}{1-b_{2} c_{2}-a_{2}} \\
& \Pi_{2}=\frac{a_{1}+b_{2} c_{2}\left(c_{1}+b_{1}+b_{2} c_{3}\right)}{1-b_{2} c_{2}-a_{2}} \\
& \Pi_{2}=\left(a_{1}+b_{2} c_{2}\left(c_{1}+b_{1}+b_{2} c_{3}\right)\right)\left(1-b_{2} c_{2}-a_{2}\right)^{-1} .
\end{aligned}
$$

- Take the derivative of Π_{2} with respect to c_{2} :

$$
\begin{aligned}
& \frac{\partial \Pi_{2}}{\partial c_{2}}=b_{2}\left(c_{1}+b_{1}+b_{2} c_{3}\right)\left(1-b_{2} c_{2}-a_{2}\right)^{-1}+ \\
& \frac{\partial \Pi_{2}}{\partial c_{2}}=\frac{\left[a_{1}+b_{2} c_{2}\left(c_{1}+b_{1}+b_{2} c_{3}\right)\right](-1)\left(1-b_{2} c_{2}-a_{2}\right)^{-2}\left(-b_{2}\right)}{1-b_{2} c_{2}-a_{2}}+\frac{b_{2}\left(b_{1}+b_{2} c_{2}\left(c_{1}+b_{1}+b_{2} c_{3}\right)\right]}{\left(1-b_{2} c_{2}-a_{2}\right)^{2}} \\
& \frac{\partial \Pi_{2}}{\partial c_{2}}=\frac{b_{2}\left(c_{1}+b_{1}+b_{2} c_{3}\right)\left(1-b_{2} c_{2}-a_{2}\right)+b_{2}\left[a_{1}+b_{2} c_{2}\left(c_{1}+b_{1}+b_{2} c_{3}\right)\right]}{\left(1-b_{2} c_{2}-a_{2}\right)^{2}} \\
& \frac{\partial \Pi_{2}}{\partial c_{2}}=\frac{b_{2}\left[\left(c_{1}+b_{1}+b_{2} c_{3}\right)\left(1-b_{2} c_{2}-a_{2}\right)+a_{1}+b_{2} c_{2}\left(c_{1}+b_{1}+b_{2} c_{3}\right)\right]}{\left(1-b_{2} c_{2}-a_{2}\right)^{2}} \\
& \frac{\partial \Pi_{2}}{\partial c_{2}}=\frac{b_{2}\left[\left(c_{1}+b_{1}+b_{2} c_{3}\right)\left(1-b_{2} c_{2}-a_{2}+b_{2} c_{2}\right)+a_{1}\right]}{\left(1-b_{2} c_{2}-a_{2}\right)^{2}} \\
& \frac{\partial \Pi_{2}}{\partial c_{2}}=\frac{b_{2}\left[\left(c_{1}+b_{1}+b_{2} c_{3}\right)\left(1-a_{2}\right)+a_{1}\right]}{\left(1-b_{2} c_{2}-a_{2}\right)^{2}} \\
& \frac{\partial \Pi_{2}}{\partial c_{2}}=\frac{b_{2}\left[a_{1}+\left(1-a_{2}\right)\left(c_{1}+b_{1}+b_{2} c_{3}\right)\right]}{\left(1-b_{2} c_{2}-a_{2}\right)^{2}} \\
& \frac{\partial \Pi_{2}}{\partial c_{2}}=\frac{b_{2}\left[a_{1}+\left(1-a_{2}\right) A\right]}{\left(1-b_{2} c_{2}-a_{2}\right)^{2}},
\end{aligned}
$$

where $A \equiv c_{1}+b_{1}+b_{2} c_{3}$.

