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This paper presents the cobweb model in which competitive firms, in a market for a single good, use 
a genetic algorithm to update their decision rules about next-period production and sales. The 
results of simulations show that the genetic algorithm converges to the rational expectations 
equilibrium for a wider range of parameter values than other algorithms frequently studied within 
the context of the cobweb model. Price and quantity patterns generated by the genetic algorithm are 
also compared to the data of experimental cobweb economies. It is shown that the algorithm can 
capture several features of the experimental behavior of human subjects better than three other 
learning algorithms that are considered. 

1. Introduction 

Departure from the hypothesis that economic agents form rational expecta- 
tions implies that a specific learning algorithm has to be employed in order to 
describe the way in which agents make decisions about their economic behavior. 
On the other hand, application of a particular algorithm faces a criticism of the 
arbitrariness of choice. Lucas (1986) suggests that comparison of the behavior of 
learning algorithms with the behavior exhibited in experimental economies with 
human subjects may be a possible way to address this problem. 

Thus, if learning algorithms, when applied to the same economic environ- 
ment, result in different behavior, observations from laboratory experiments 
with human subjects may be used to determine which algorithm is more 
successful in describing actual human behavior. In this paper, a genetic algo- 
rithm (GA), developed by Holland (1970a), is used to model learning of 
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economic agents in the cobweb model. The results obtained with the application 
of the GA are compared to the behavior observed in cobweb experiments with 
human subjects and to the results obtained in studies of other learning algo- 
rithms within the context of the same model. The objective is to examine if the 
GA can account for some of the results of the experimental economies which 
differ from the predictions of other adaptive schemes. 

The cobweb model is a model of a market for a single good in which firms that 
are price takers make their production decision in every time period before they 
observe a market price. Total quantity supplied and the exogenously given 
demand determine the price that clears the market. The cobweb theorem, first 
formulated by Ezekiel (1938), states that (provided a firm bases its production 
plan on the assumption that present prices will continue and its own quantity 
produced will not affect the market) the market price will converge to its 
equilibrium value if the ratio of the demand and supply slopes is less than one 
(cobweb stable case). If the ratio is greater than one (cobweb unstable case), then 
the market price diverges away from the equilibrium. 

Since then, the model has been extensively used to examine the behavior of 
the system under various assumptions about the way in which agents form their 
expectations. The rational expectations version of this model has been for- 
mulated by Muth (1961), while different versions of the cobweb model with 
learning have been studied, among others, by Nerlove (1958), Carlson (1969), 
Townsend (1978), DeCanio (1979), Frydman (1981), Brandenburger (1984), Bray 
and Savin (1986), Marcet and Sargent (1987), and Nyarko (1990). Holt and 
WiUiamil (1986) and Wellford (1989) simulated the model in experimental 
economies with human subjects. While most of these algorithms (three of which 
will be discussed in the second section of the paper) result in divergent behavior 
for the cobweb unstable case, divergent patterns were not observed in the 
experiments with human subjects in which cobweb economies were 
simulated. 

The GA describes the evolution of a population of rules, representing 
different possible beliefs, in response to experience. The frequency with which 
a given rule is represented in the population indicates the degree of credence 
attached to it (if the population represents a single mind), or the degree to 
which it is accepted in a population of agents (if the population represents 
different agents interacting in a market). Rules whose application has been 
more successful are more likely to become more frequently represented in the 
population, through a process similar to the natural selection in population 
genetics. Random mutations also create new rules by changing certain features 
of rules previously represented in the population, thus allowing new ideas to be 
tried. 

First application of GAs to economics was described in Miller (1986). GAs 
and other computer-based adaptive algorithms have been used in a variety of 
economic environments [for example, Miller (1989), Marimon, McGrattan, 
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and Sargent (1990), Rust, Palmer, and Miller (1989), Binmore and Samuelson 
(1990)]. 1 Among others, the questions examined in these studies relate to the 
capability of adaptive agents to learn Nash equilibrium behavior, equilibrium 
selection in the environments with the multiplicity of equilibria, and the compu- 
tation of equilibria in economies in which it is hard to obtain analytical 
solutions. The algorithms have also been useful in the examination of the 
behavior observed in laboratory experiments with human subjects [Crawford 
(1989), Miller and Andreoni (1990a), Miller and Andreoni (1990b), Arthur 
(1991) ]. The results of these studies show that computer-based adaptive algo- 
rithms can generate behavior that corresponds to the regularities observed in 
experiments with human subjects which differ from the predictions of or cannot 
be explained by models with rational agents. 

The existence of a number of results on learning and experimental behavior 
within the framework of the cobweb model motivated the choice of that model 
for GA application presented in this paper. Results of Wellford's experimental 
economies were used for the comparison with GA behavior. GA economic 
environment and GA agent's decision making were tailored in such a way as to 
match Wellford's experimental design. The experimental design was also a cri- 
terion for choosing three algorithms, cobweb expectations, sample average of 
past prices, and least squares, whose behavior is contrasted to the patterns 
observed in experiments and to those generated by the GA. These algorithms 
were studied in the cobweb environments which correspond to or can be easily 
mapped into environments simulated in Wellford's experimental economies. 

The second objective of the paper is to examine the behavior of the cobweb 
model GA within two alternative designs, single-population and multiple-popula- 
tion design [Arifovic (1991)]. These designs are related to two possible ways in 
which we can think about a GA population of strings: (1) that a population of 
strings represents a population of agents with different opinions, each string 
standing for an individual agent (single-population design), or (2) that every 
agent has a whole population of strings, each string representing one of an 
agent's alternative ideas (multiple-population design). 

Computer simulations of the cobweb model were conducted using two GA 
versions. One is the version described in Goldberg (1989) with three genetic 
operators: reproduction, crossover, and mutation, while the other, in addition to 
these three, includes the election operator [Arifovic (1991)]. The first version will be 
referred to as the basic GA and the second will be referred to as the augmented GA. 

The paper is organized as follows. Description of the rational expectations 
version of the cobweb model is presented in the second section. This section also 
contains the results of previous work on learning and experiments within the 

1 Holland and Miller (1991) provide an overview of the applications of computer-based adaptive 
algorithms, including the GA, in economics. 
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context of the cobweb model. Section 3 describes the single-population GA 
application, while multiple-population GA design and results of simulations are 
presented in the fourth section. Section 5 is related to the comparison of the 
GA's behavior to Wellford's experimental results and to the behavior of cobweb 
expectations, sample average of past prices, and least squares learning algo- 
rithms. Concluding remarks are given in the sixth section. 

2. Description of the cobweb model 

There are n firms in a competitive market that are price takers and that 
produce the same good. Since the production takes time, quantities produced 
must be decided before a market price is observed. 

The cost of a production of a firm i is given by 

i ,  /,/~2 
C i ,  t = xq i , t  + 2Y  t t i , t ,  ( 1 )  

where Ci, t is firm i's cost of a production for sale at time t and qi , t  is the quantity 
it produces for sale at time t. 

The expected profit of an individual firm, H i . t ,  is 

/1~  e , , t  = Pt  qi , t  --  x q i , t  --  ½yn(q i , t )  2 (2) 

where P~ is the expected price of the good at t. At t - l, each firm chooses 
a quantity q~,t to maximize its expected profit II~,t on the basis of its expecta- 
tions, P~, about the price that will prevail at time t. Thus, from the first-order 
conditions for profit maximization, q~,t is given by 

qi, t  = l (P7 - x ) .  (3) 
y n  

The price P t  that clears the market at time t is determined by the demand curve: 

Pt  = A - -  B ~ q i , t .  (4) 
i = 1  

In the rational expectations equilibrium P~ = Pt ,  i.e., firms' expectations 
about the price, Pt, of a good in period t equal the equilibrium price [Muth 
(1961)]. Thus, 

x + y n q t  = A - -  B n q t ,  

where qt = qct  for all i, or 

A - - x  
qt = q*  - -  - -  (5) 

n ( B  + y)"  
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The objectives of the GA application are to see whether quantities produced 
and offered for sale by firms that are using the GA as their learning scheme will 
converge to this constant quantity, q*, and how the results obtained in GA 
computer simulations compare to other results on learning and experimental 
behavior. 

2.1. Application o f  learning algorithms 

As already noted in the introduction, the cobweb model setup has been widely 
used in studies of learning. Three algorithms that are chosen for the comparison 
with the GA and experimental behavior are cobweb expectations, sample 
average of past prices, and least squares. 

The assumption of cobweb expectations [Ezekiel (1938)] is that agents expect 
a price at t to be equal to the price at t - 1, 

P~ = P,- 1 ' 

A firm bases its plans for future production on the assumption that present 
prices will continue, and that its own production will not affect the market. The 
price will converge to the equilibrium price for the cobweb stable case, i.e., only if 
B/y  < 1 [Nerlove (1958)]. For the cobweb unstable case (B/y > 1), the price 
sequence diverges away from the equilibrium. 

If price expectation is given as a sample average of  past prices [Carlson 
(1969)], 

l t ~  
P~ = P~, 

s =  0 

the price sequence converges to the equilibrium value for both the cobweb stable 
case (B/y < 1) and the cobweb unstable case (B/y > 1). 

In a model in which agents use least squares to update their price estimate, the 
expectation of price Pt is given by 

P~ = f l tPt-  1, 

where 

t - - 1  I t - - 1  

fit = P~P~- 1 P~- 1 , 
8 $ 

given initial prices P_ 1 and Po. In each time period t, agents run regression on 
past values of prices to obtain an estimate of the coefficient fit. 

W

W

W
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In the version of the cobweb model with stochastic exogenous demand and 
exogenous supply shock which firms observe before they make production 
decisions, Bray and Savin (1986) derive conditions for the convergence of the 
least squares estimate, /~,, to its equilibrium value (in equilibrium/~* = 1) for 
the cobweb stable case. For the cobweb unstable case, they conjecture that the 
estimate diverges away. This conjecture is supported by the results of their 
computer simulations of the unstable case. In all simulations they conducted, 
the estimate diverged away from the equilibrium. 

2.2. Wellford's cobweb experiments 

Wellford conducted the total of twelve experiments in which both stable and 
unstable cobweb cases were simulated. Each experiment had five participants 
and lasted for thirty periods. Sellers in the market for a single good had to make 
decisions on how much to offer for sale in the next period. Market clearing price 
was computed using exogenously given demand schedule and the total market 
supply, determined as the sum of individual supplies. 

The results of the experiments showed that unstable cobweb treatments did 
not exhibit exploding patterns. Price fluctuations, within the region defined by 
the competitive price and Cournot price, characterized all experimental data. In 
some of the experiments, there were periods when the market price would reach 
the rational expectations equilibrium level, but did not remain there for the 
whole duration of any of these experiments. 

Since the price paths of unstable cases exhibited greater fluctuations than 
those of stable ones, Wellford tested the hypothesis that the price variance 
across all periods was the same for both stable and unstable treatments. The 
hypothesis was rejected in favor of the alternative hypothesis (that the price 
variance of the unstable treatments exceeds that of the stable treatments). 

3. Single-population genetic algorithm 
A population of chromosomes, A~, represents a collection of firms' decision 

rules at time period t. A firm i, i =  1 . . . . .  n, makes a decision about its 
production for time t using a chromosome, Ai,~ (member of population at time 
period t), a binary string of finite length l, written over {0, 1} alphabet. A de- 
coded and normalized value of a binary string i gives the value of the quantity 
produced by a firm i at time period t. 

For a string i of length l the decoding works in the following way: 

1 
Xi, t = E ak, t 2 k - 1 '  

k= l  

where akt is the value (0, 1) taken at the kth position in the string. 
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After a string is decoded, integer x~,, is normalized in order to obtain a real 
number value q~,t, the quantity that firm i decides to produce and offer for sale 
at time period t: 

qi,t = Xi , t / I~  , 

where / (  is a coefficient chosen to normalize the value of x~,t. An example of the 
way in which decoding and normalization work for a string of length l = 3 is 
given in appendix 1. 

Fitness of a string i at time period t, pi.t, is determined by the value of firms' 
profit earned at the end of time t, 

]~i,t "~ I-li,t "~" P t q i , t  - -  C i , t .  

Firms' decision rules are updated using three genetic operators, reproduction, 
crossover, and mutation, in the basic GA version or using four genetic operators, 
reproduction, crossover, mutation, and election, in the augmented GA version. 

Reproduction makes the copies of individual chromosomes. The criterion used 
in copying is the value of the fitness function. Chromosomes with higher fitness 
value are assigned higher probability of contributing an offspring that under- 
goes further genetic operation. Thus, a probability that a chromosome Ai,t will 
get a copy Ci,t is given by 

P(Ci't)=~xi't/~=l~i'ti i = 1  . . . . .  n. 

The algorithmic form of the reproduction operator is like a biased roulette wheel 
where each string is allocated a slot sized in proportion to its fitness. A number 
of spins of the wheel is equal to the number of strings in a population. Each spin 
yields a reproduction candidate. Once a string is selected, its exact copy is made. 
When n copies of strings are made (the number of strings in a population is kept 
constant), the reproduction is completed. These copies constitute a matin# pool 
which then undergoes the application of other genetic operators. 

Crossover exchanges the parts of pairs of randomly selected strings. It oper- 
ates in two stages. In the first, two strings are selected from the mating pool at 
random. Then in the second stage, a number k is selected, again, randomly from 
(1 . . . . .  l - 1) and two new strings are formed by swapping the set of binary 
values to the right of the position k. The total of n/2 (n is even integer) pairs are 
selected and the crossover takes place on each pair with probability pcross. An 
example of the crossover between two strings for l = 8 and k = 4 is 

1 0 1 0 1 1  1 1 1 
1 1 0 1 1 0  0 1 0 
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After the crossover is performed, two resulting strings are 

1 0 1 0 0 0 1 0 
1 1 0 1 1 1 1 1 

Mutation is the process of a random change of the value of a position within 
a string. Each position has a small probability, pmut, of being altered by 
mutation, independent of other positions. 

Election tests newly generated offsprings before they are permitted to become 
members of a new population. The string value of each new offspring, obtained 
at time t, is decoded in order to obtain the value of the production that an 
offspring would represent were it used as an actual decision rule. Profit that 
results from such production decision is computed using the price that prevailed 
in the market at time t - 1, and it represents the offspring's potential fitness 
value. This potential fitness of an offspring is compared to the actual fitness 
values of its parents, i.e., the fitness values of the two parent strings that were 
evaluated at the end of period t - 1. (Parents are the pairs of strings that are 
taken from the mating pool for the crossover application.) 

Possible results of the election operator test are the following: If only one (out 
of two offsprings for each parent's pair) has a fitness higher than both of its 
parents, it replaces the parent with lower fitness, while the parent with higher 
fitness remains in the population. In case that both offsprings have fitnesses 
higher than the fitness value of each parent, they replace both parents as new 
members of the population. If both parents have higher fitnesses than their 
offsprings, they remain in the population of the new generation. 

In case of the basic GA, a population of chromosomes that will represent 
decision rules of the firms at time period t is obtained in the following way: First, 
the application of the reproduction operator yields a population of n copies. 
Then, crossover and mutation operators are applied to this population to yield 
a new population of decision rules that will determine firms' production at t. If 
the augmented GA is used, the application of reproduction, crossover, and 
mutation is followed by the application of an election operator. 

After the members of the new population are determined, a quantity that will 
be produced and offered for sale at time t is computed for each firm. Next, 
individual quantities are summed up and the market price of period t, Pt, is 
computed using eq. (4). 

Costs associated with produced quantities are computed for each firm [eq. 
(1)], and a profit for firm i (fitness value of a string i), i = 1 . . . . .  n, is calculated 
using the price of generation t, Pt [eq. (2)]. 

The above described steps are applied iteratively for T generations. The initial 
population at time period 0 is randomly generated. 

The whole process may be given the following economic interpretation. 
Reproduction works like the imitation of successful rivals where the production 
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decision rules of those firms whose beliefs are given by well-performing strings 
are copied by others, by virtue of them earning higher profits in the market. 
Strings with lower fitness values, which means worse production decisions and 
lower profits, get less copies (or none) in the next generation, as investors or 
financial intermediaries are not willing to allocate investment funds into an 
unprofitable production. Crossover and mutation are used to generate new 
ideas (beliefs) on how much to produce and offer for sale, recombining the 
existing beliefs and generating new ones with crossover and mutation. 

If the election operator  is included, the above interpretation may be modified 
in the following way. In each period firms generate new production decisions 
using genetic operators. They compare the fitnesses of these new potential 
proposals to the old set, under the market  conditions observed in the past. Only 
new ideas that appear  promising on such grounds are actually implemented 
(whereas the generation of new ideas is random, their implementation is not). 

It is worth noting that with genetic algorithm learning, individual firms do not 
use first-order conditions for decision making, as they do in the case of the other 
learning algorithms previously studied in the context of the cobweb model. They 
do not equate marginal cost to the expected price and need not calculate either 
in order to decide how much they are going to produce in the following period. 
Still, by the time the algorithm converges, firms have learned not only how to 
predict the correct rational expectations equilibrium price, but also how to 
make production decisions that will maximize their profits. 

3.1. Results o f  simulations 

Simulations were conducted for seven different sets of the cobweb model 
parameter  values (see table 1), using both the basic and the augmented algo- 
rithm. GA populations consisted of thirty strings and a string length was set to 
thirty bits. Eight different sets of crossover and mutat ion rates that were used are 
given in table 2. Each simulation was conducted for two hundred periods. 2 

Simulations of the basic GA did not result in convergence to the rational 
expectations equilibrium values. In every simulation, individual quantities and 
prices fluctuated for its entire duration. The first set of genetic operator rates 
(pcross = 0.6 and pmut = 0.0033) had consistently the smallest magnitude of 
fluctuations. 

On the other hand, simulations which were conducted by using the aug- 
mented GA resulted in the convergence of the algorithm to rational expectations 

2 Multiple runs (using different seed values for the initialization of the random number generator) 
of simulations were conducted for each combination of the cobweb model parameter values and set 
of genetic operator rates to ensure that the results are robust to different sequences of random 
numbers. The same procedure was used for the simulations of the multiple-population GA whose 
results are reported in the following section. Results of individual runs, not averages over multiple 
runs, were examined. 
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Table 1 
Parameter values of the cobweb model used in genetic algorithm simulations. 

Set 1 2 3 4 5 6 ~ 7 a 

A 100 10 100 7 1000 2.184 2.296 
B 0.02 0.03 0.02 0.003 0 .02  0.0152 0.0168 
x 3 2 1 2 200 0 0 
y 1 1 1 1 1 0.016 0.016 

aSet 6 represents the parameter values of the stable cobweb case, while set 7 represents the values 
of the unstable cobweb case used in Wellford's experiments. 

Table 2 
Crossover and mutation rates used in genetic algorithm simulations. 

Set 1 2 3 4 5 6 7 8 

pcross 0.6 0.6 0.75 0.75 0.9 0.9 0.3 0.3 
pmut 0.0033 0.033 0.0033 0.033 0.0033 0.033 0 .0033  0.033 

Table 3 
Results of the simulations for single-population GA (set of cobweb model parameter values). 

GA set 1 2 3 4 5 6 7 8 

Basic pa 1.174 1.032 1.149 0.973 1.163 1.200 1.108 1.200 
stable 6 0.081 0.111 0 . 0 5 4  0 . 0 7 3  0 . 0 6 5  0 . 0 7 9  0 . 0 5 9  0.071 

fin 0.098 0 . 1 4 1  0 . 0 6 2  0 . 1 6 4  0 . 0 7 7  0 . 1 1 3  0 . 0 6 1  0.106 

Basic /5 1.210 1.200 1.210 1.180 1.014 1.200 1.630 1.204 
unstable 6 0.066 0 . 0 7 5  0 . 0 6 0  0 . 1 1 6  0 . 0 5 2  0 . 0 9 2  0 . 0 6 2  0.086 

6R 0.115 0 . 1 0 8  0 . 1 0 6  0 . 1 3 1  0 . 1 1 8  0 . 1 1 6  0 . 0 7 6  0.120 

Augment. /5 1.119 1.119 1.121 1.121 1.120 1.119 1.120 1.120 
stable 6 0.005 0 . 0 0 5  0.011 0.011 0 . 0 0 9  0 . 0 0 9  0 . 0 1 1  0.012 

~R 0.005 0 . 0 0 5  0.011 0.011 0 . 0 0 9  0 . 0 0 9  0 . 0 1 1  0.012 

Augment. /5 1.120 1.120 1.121 1.121 1.122 1.121 1.121 1.121 
unstable 6 0.008 0 . 0 0 7  0 . 0 1 2  0.011 0.011 0 . 0 1 1  0 . 0 1 1  0.009 

6~ 0.008 0 . 0 0 7  0 . 0 1 2  0 . 0 1 2  0 . 0 1 1  0 . 0 1 1  0 . 0 1 1  0.009 

a/5 = average price of a simulation (200 periods), 6 = standard deviation about the average price 
of a simulation, fir = standard deviation about the rational expectations equilibrium price. 

e q u i l i b r i u m  va lues  for  all sets  o f  c o b w e b  m o d e l  p a r a m e t e r  va lues ,  w h i c h  inc lude  
b o t h  s t ab le  a n d  u n s t a b l e  cases.  All t he  s t r ings  in a G A  p o p u l a t i o n  of  e a c h  
s i m u l a t i o n  b e c a m e  iden t ica l ,  i.e., the  beliefs o f  all f i rms  a b o u t  h o w  m u c h  to  
p r o d u c e  a n d  offer  for  sale c o n v e r g e  to  t he  s a m e  va lue  w h i c h  is e q u a l  to  the  
o p t i m a l  q u a n t i t i e s  w h e n  the  m a r k e t  p r ice  is k n o w n .  
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Fig. 1. Single-population basic and augmented GA price patterns - 7th set of the cobweb model 
parameter  values, 1st set of genetic operator rates. 

The second set of genetic operator rates (pcross = 0.6 and pmut = 0.033) 
resulted in the fastest convergence for all cobweb model parameter values that 
were examined. Use of other sets of genetic operator rates resulted in greater 
fluctuations that lasted longer, relative to the results obtained when the second 
set of rates was used. Average prices, standard deviations about average prices, 
and standard deviations about rational expectations prices for the sixth and 
seventh set of the cobweb model parameter values and for all the sets of GA 
rates that were used are given in table 3. 

Price patterns of both the basic and the augmented GA, for the seventh set of 
the cobweb model parameter values and for the first set of genetic operator rates 
(pcross = 0.6 and pmut = 0.0033), are exhibited in fig. 1. 

3.2. Discussion of  the election operator effect 

Necessary condition for the algorithm's convergence to the equilibrium values 
is that no rule (string) in the GA population deviates from the quantity that 
maximizes profit at a market clearing price. This also implies that the variance of 
the population of rules is equal to zero. In equilibrium, the population of 
identical rules decode to the quantity that equals the value which maximizes 
profits at a correctly perceived equilibrium price. 

While the reproduction operator works towards a reduction in the variance 
of the rules, mutation works towards maintaining a degree of diversity. In sim- 
ulations with the basic GA, the extent to which the diversity brought in by 
mutation offsets the effects of the reproduction operator depends on the rate of 
mutation and on the complexity of the learning environment. In any event, 
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continuing effects of mutation will maintain a variance of rules greater than zero 
as long as a simulation is conducted, resulting in rules which decode to 
quantities different from the quantities that maximize profits at given prices. 

On the other hand, the application of the election operator results in the 
reduction of rules' deviation from the quantity that maximizes profit at the 
market clearing price and in the reduction of the population variance over the 
course of a simulation. Finally, the election operator brings the variance of the 
population rules to zero as the algorithm converges to the equilibrium values. 

Once the algorithm converges to the equilibrium values, all strings become 
identical and, thus, all are decoded into the same equilibrium value of produc- 
tion, q*. Mutation will continue to generate new, different strings at a rate that is 
exogenously given, but none of these strings will be accepted into the popula- 
tion. Any string that decodes into the quantity q such that q # q* will have lower 
fitness value, evaluated at the equilibrium price P*. Thus, the election operator 
enables an endogenous shut-off of mutation, resulting in its effective rate equal 
to zero in equilibrium. 

This does not, however, mean that the adjustment of the algorithm to new 
equilibrium values will be prevented if the underlying parameters of the econ- 
omy change (for example, a change in the production function or a change in the 
demand schedule). Suppose that for a given set of the cobweb model parameters, 
x, y, A, and B, the GA converges to the equilibrium with the equilibrium price 
P* and equilibrium individual quantity q*. All strings are identical and decode 
to this quantity. Then, at time period T + 1, a parameter of the demand schedule 
changes from the value A to the value A'. This will also result in the change of 
the equilibrium values of price and individual quantity to the new values of P*' 
and q*'. 

When genetic operators are applied to yield a population of production 
decision rules at T + 1, reproduction and crossover will have no effect on the 
population of identical strings. Mutation may generate some new strings with 
quantities different from q*, but they will not be accepted into the population of 
period T + 1 since they are evaluated at the price PT = P*. Thus, at the period 
when the change occurs, T + 1, all strings that determine market supply will still 
decode to the quantity q*. However, these strategies will no longer result in price 
P*. The price at T + 1 will be given by 

P T  + I = A '  - -  B n q *  # P *  . 

At time T + 2, after the application of reproduction, crossover, and mutation, 
strings are evaluated at price PT+ 1 and any string that decodes to quantity 
ql ~ q*, which has a higher fitness value (that is now possible since q* is no 
longer optimal quantity), will be accepted into the population to give decision 
rules for production at T + 2. If such a string (or strings) is not created at T + 2, 
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it is created in one of the subsequent periods. This way diversity is brought  into 
the population and reproduction, crossover, and mutat ion will work their way 
through towards the adjustment to the new equilirium values. [For  a detailed 
discussion of the behavior of the GA with an election operator in the environ- 
ments in which a parameter  of the economic model changes see Arifovic (1991). ] 
In computer  simulations, the adjustment of GA populations of identical strings 
to new equilibrium values, when the change in a parameter  occurs, does not last 
longer than the adjustment of initial GA populations of strings that are 
randomly generated. 3 

It should be noted that the information about  the economic environment 
available to cobweb firms that use the augmented GA is the same as the 
information available to firms that use the basic GA. The application of the 
election operator  requires only the use of the previous period market  price to 
test newly generated strings. The market  price is also observed and used by basic 
GA firms to compute the profits they earn, i.e., the fitnesses of the decision rules 
they used. 

4. Multiple-population genetic algorithm 
An alternative way to represent economic agents' learning by means of the 

GA is to endow every individual agent with a whole population of strings. Then 
we can think of these strings in such a population as being an agent's mutually 
competing ideas about  what his behavior in a given environment should be. 
In each time period, only one string is selected as a string that determines 
the agent's behavior. The probability of choosing a particular string is propor-  
tional to its performance under predefined conditions. Although an agent 
chooses only one string from the whole collection, he still evaluates all of his 
alternative ideas, upon obtaining the information about  variables whose values 
he did not know at the time of his decision making. This way the agent gets the 
information as to what the value of his objective function would have been had 
he used a particular string from the population of competing decision variable 
values. The agent uses this information in the process of updating his beliefs 
(updating is performed using genetic operators) to assign higher probability of 
reproduction to those strings that yielded higher values in the performance 
evaluation. 

3 Another possible way to deal with the problem of the mutation rate effects which prevent the 
algorithm's convergence is to use an exponentially decaying mutation rate which is used in 
simulated annealing and in some genetic algorithm applications. The rate at which mutation 
decreases as the number of simulation periods increases is given exogenously. While the inclusion of 
the election operator does not impair the system's capability for new adjustment in case of change in 
underlying parameters of the model, this ability does get reduced if the mutation rate is exogenously 
decreased over time [see Arifovic (1992)]. 
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The multiple-population GA is applied to the cobweb model described in the 
previous section. It is richer compared to the single-population GA in the sense 
that we can now think of firms as having a number of different ideas about their 
possible production quantities, which they evaluate and then choose one among 
them, using some adopted selection rule. On the other hand, it still does not 
require any excessive computational capacity on the part of the agents. Also, as 
in the case of the single-population GA, there is no assumption of profit 
maximization on the part of firms preceding their production decision. At the 
same time, it is not simplistic in the way of the single-population GA, where each 
agent has only one strategy at his disposal. 

4.1. Description of the model 
Each firm j ( j  = 1 , . . . ,  m) has a collection At i of n possible decision rules 

which is given as a population of binary strings. String i, member of thejth firm's 
collection at generation t, is denoted byAj,~. The decoded and normalized value 
of each string represents a possible value of a next-period production, qJ, t. 
A string i (i = 1 . . . . .  n) is assigned a competition fitness which is equal to the 
profit at the price that prevailed at generation t -  1 and the quantity repre- 
sented by string i. 

Every string i in a firm j 's population of strings has a chance to be selected as 
the string that will supply the value representing the quantity of firm j's next- 
period production. A probability that a particular string is chosen as firm j's 
decision rule for production at t is proportional to its competition fitness and is 
given by 

,,t ]2 P t - 1  #i,t ( e t - 1 )  , 
i= 

w h e r e  nJi,t is the probability that a string i, a member of firm j's collection of 
possible decision rules at generation t, is chosen and I~jf(P,-1) is the competi- 
tion fitness of a string i evaluated at the price that prevailed in the market at 
generation t - 1. The selected string becomes firmsj's realized decision rule that 
gives quantity q~.,2 as the quantity to be produced in time period t. 4 

The market clearing price is given by 

Pt = A -- B ~ qt'J. (6) 
j = l  

'*The information that firms have in this setup is the same as in the single-population framework. 
They know only the previous-period price and their own profits earned. They do not know the 
quantities supplied by other firms. The assumption of the original cobweb model that a finn believes 
its own quantity is not going to affect the market is maintained here as well. It is also the assumption 
of all adaptive algorithms described in the second section. 
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Firm j 's cost of producing a quantity q~"J, represented by a chosen string, at 
generation t is given by 

C{ = xq[ "j + ½ y (q : ' J ) z  , (7) 

and its profit at t is given by 

Hit = Ptqt "j -- C~ (q~t'J). (8) 

Price P,  is used to determine reproduct ion fitness values of all strings in all 
m populations. This fitness is equal to the profit at the price that cleared the 
market at t and at the quantity represented by a particular string: 

J J #i,t = Hi , ,  = PtqJi.t -- C4..,, 

where/~/,t is a reproduction fitness value 5 of a string i at t in a population that 
belongs to thej th firm, I-lit is a profit that a firmj would have earned had string 
i from its population been used for production, q~,, is a quantity represented by 
string i, and CI,, are the costs associated with the production of that particular 
quantity. 

After the evaluation of their fitness takes place, operators of the basic GA, 
reproduction, crossover, and mutation, are applied within each firm's collection 
of strings to yield the new sets of possible decision rules for production at t + 1. 

Decoded and normalized values of the members of a collection A1+I give 
quantities qi,, + 1 (i = 1 . . . . .  n), which are possible quantities for the production 
at t + 1. In order to reach a decision about the production at t + 1, each firm 
j computes competition fitnesses of the newly generated strings in a collection 
A[+ 1, using price Pt, and chooses a single string which will give the quantity to 
be actually produced. 

The process is repeated for T generations. Initially, all collections of strings 
are randomly generated. 

In the augmented multiple-population GA version, the election operator is 
added. Before entering the competition for a string that determines next period's 
production, strings that are generated at period t + 1 as a result of application of 
genetic operators have to pass a qualifying test given by the election operator. 
Within each collection of strings, the election operator is applied in the same 
manner as was described in case of the single-population GA. 

5 Notice that this is a fitness that is computed after market clearing takes place and price Pt is 
known. It is used when the reproduction operator is applied to determine the probability that 
a string i is reproduced. On the other hand, the competition fitness value is determined after new 
strings have been created through the action of genetic operators and it is used to determine the 
probability that a particular string is chosen as the actual decision rule. 
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4.2. Results o f  simulations 

Simula t ions  were conduc ted  for the n u m b e r  of  firms m = 2, m = 3, m = 5, and  
m = 6 and for the pa rame te r s  values of the cobweb  mode l  r epor ted  in table  
1 (the same tha t  were used for the s ing le -popula t ion  G A  applicat ion) .  F o r  each 
of these specifications,  bo th  the basic  and  the augmen ted  G A  were appl ied,  using 
the sets of values of  the genetic o p e r a t o r  rates given in table  2. 

The results  of  the s imula t ions  show tha t  the augmen ted  G A  converged  to the 
ra t iona l  expec ta t ions  equi l ib r ium values for all sets of cobweb  mode l  p a r a m e t e r  
values, inc luding s table  and uns table  case, and  for all sets of genetic opera tors .  
At  the same time, the basic  G A  kept  osci l la t ing until  the end of  every s imulat ion.  
These osci l la t ions  are  the result  of  the effects of m u t a t i o n  which were discussed 
in the previous  section. N o  significant decrease in the magn i tude  of osci l la t ions 
was observed  when s imula t ions  were conduc ted  with a low rate  of m u t a t i o n  
(0.0033) and  for a large number  of  per iods  (10,000). Table  4 conta ins  average 
prices, s t a n d a r d  devia t ions  a b o u t  average prices, and  s t anda rd  devia t ions  a b o u t  
ra t iona l  expec ta t ions  prices for the sixth and seventh set of the cobweb mode l  
p a r a m e t e r  values and  for all sets of the G A  rates. Results  for bo th  the basic  
mu l t i p l e -popu la t i on  G A  (m = 5) and  the augmen ted  mul t i p l e -popu la t ion  G A  
(m = 5) are included.  

A l though  only a single s tr ing de te rmines  a firm's nex t -per iod  p roduc t ion ,  by 
the t ime the augmen ted  G A  achieves convergence to the ra t iona l  expec ta t ions  
equi l ibr ium,  the ent ire  f irm's p o p u l a t i o n  of str ings converges  to the same value. 

Table 4 
Results of the simulations for the multiple-population GA (set 6 and 7 of cobweb model parameter 

values). 

GA set 1 2 3 4 5 6 7 8 

Basic pa 1.109 1.230 1.121 1.138 1.114 1.127 1.117 1.139 
stable 6 0.065 0 .111  0 . 0 6 0  0 .102  0 .078  0 .109  0 .079  0.113 

fir 0.066 0 .111  0 . 0 6 0  0 . 1 0 4  0 .078  0 .109  0 .079  0.115 
Basic /5 1.135 1.131 1.124 1.119 1.163 1.134 1.168 1.126 
unstable 6 0.062 0 . 0 9 9  0 .061  0 . 1 1 0  0 .055  0 .112  0 .074  0.t00 

6R 0.063 0 .099  0 .061  0 . 1 1 0  0 . 0 7 0  0 .113  0 .088  0.100 
Augment. /5 1.115 1.120 1.120 1.120 1.121 1.118 1.113 1.113 
stable 6 0.006 0 . 0 0 6  0 .012  0 . 0 1 0  0 . 0 1 0  0 .010  0 . 0 2 4  0.022 

6R 0.008 0 .007  0 .012  0 .010  0 . 0 1 0  0 . 0 1 0  0 .025  0.023 
Augment. /5 1.120 1.120 1.120 1.121 1.117 1.120 1.110 1.110 
unstable 6 0.010 0 .007  0 .013  0 .013  0 .011 0 . 0 1 2  0 .025  0.025 

6R 0.010 0 .007  0 .013  0 .013  0 .011  0 . 0 1 2  0 .027  0.027 

"P = average price of a simulation (200 periods), 6 = standard deviation about the average price 
of a simulation, 6R = standard deviation about the rational expectations equilibrium price. 
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By contrast, at the end of each simulation, there is still a difference between the 
strings of a population that belongs to a firm which uses the basic GA. 

Fig. 2 shows the price level behavior for the simulation of the multiple- 
population basic GA (m = 2, sixth set of the cobweb model parameter values, 
second set of genetic operators rates), while fig. 3 shows the behavior of the same 
variable for the simulation of the multiple-population augmented GA (m = 2, 
seventh set of the cobweb model parameter values, second set of genetic 
operator rates). 
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Fig. 2. Multiple-population basic GA - price and rational expectations price, m = 2, 6th set of the 
cobweb model parameter values, 2nd set of genetic operator rates. 
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Fig. 3. Multiple-population augmented GA - price and rational expectations price, m = 2, 7th set 
of the cobweb model parameter values, 2nd set of genetic operator rates. 
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5. Comparison with experimental  results 

Three aspects of Wellford's experimental data, namely the absence of divergent 
patterns in the cobweb unstable case, fluctuations around the cobweb model 
equilibrium values, and the greater price variance of the unstable case, will be used 
for the evaluation of the performance of cobweb expectations, sample average 
of past prices, least squares, and the GA. 6 Figs. 4 and 5 exhibit the behavior 
of average individual quantities with plus and minus one standard deviation, 
using data from Wellford's experiments 1 (stable case) and 3 (unstable case). 

Fluctuations of prices and quantities around their rational expectations 
values that characterize models in which agents form cobweb expectations are 
observed in Wellford's experiments as well, but (as was already discussed) for the 
parameter values of the unstable case Wellford's experiments did not follow the 
divergent price path predicted by the model in which agents have cobweb 
expectations. Fig. 6 exhibits the pattern of the individual quantity for the 
cobweb stable case. 

The adaptive scheme in which firms make their price forecast by taking the 
sample average of past prices converges for both stable and unstable case, but 
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Fig. 4. Wellford's experiment 1 (stable case) - average quantity, average quantity plus one 
standard deviation, average quantity minus one standard deviation. 

6The results of Wellford's experiments conducted under conditions of incomplete information 
were those that could be used for the comparison. In the experiments with incomplete information, 
sellers received information only about the last-period price and about their own earned profits, but 
no information about the total quantity sold or about quantity choices made by other market 
participants. This corresponds to the GA environment in which strings do not obtain any other 
information except for their fitness (profit) and the price of the last period. That is also the only 
information available to agents who adapt by using cobweb expectations, sample average of past 
prices, or least squares. 
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Fig. 5. Wellford's experiment 3 (unstable case) - average quantity, average quantity plus one 
standard deviation, average quantity minus one standard deviation. 
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Fig. 6. Cobweb expectations learning scheme (stable case) - individual quantity. 

since its convergence is smooth, it does not bear resemblance to the experi- 
mental data which is characterized by fluctuations around equilibrium values. 
Moreover, the price variance of the stable case is not greater than the price 
variance of the unstable case. The behavior of this algorithm in computer 
simulation for Wellford's unstable set of parameter values is given in fig. 7. 

For the parameter values of the cobweb stable model, the least squares 
algorithm exhibits the price and quantity fluctuations that die out as the 
algorithm converges to rational expectations values. On the other hand, it does 
not converge in computer simulations for the unstable cobweb case. The price 
and quantity fluctuations become larger and larger as the algorithm diverges 
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Fig. 7. Sample average of past-price learning scheme (stable case) - individual quantity. 
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Fig. 8. Least squares learning scheme (unstable case) - individual quantity. 

away from the rational expectations values. Fig. 8 shows the pattern of the 
individual quantity for thirty periods, for the parameters of Wellford's unstable 
case. 

Both single-population and multiple-population augmented GA's converge 
for the stable and the unstable cobweb case. Prior to convergence, the GA 
exhibits fluctuations around the equilibrium values. The patterns of individual 
quantities with plus and minus one standard deviation, generated by the 
multiple-population augmented GA for the cobweb stable and cobweb unstable 
case, are presented in figs. 9 (stable) and 10 (unstable). 
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Fig. 9. Multiple-population augmented GA - average quantity, average quantity plus one standard 
deviation, average quantity minus one standard deviation, 6th set of the cobweb model parameter 

values, 2nd set of GA rates. 
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Fig. 10. Multiple-population augmented GA - average quantity, average quantity plus one stan- 
dard deviation, average quantity minus one standard deviation, 7th set of the cobweb model 

parameter values, 4th set of GA rates. 

G A  price pa t t e rns  also show tha t  the var iance  of uns table  cases is greater  than  
tha t  of  s table  ones. (Descr ip t ion  of  the var iance  test ing p rocedure  is given in 
append ix  2.) Var iance  tests were per formed  on da t a  genera ted  using bo th  the 
s ing le -popu la t ion  and  mu l t i p l e -popu la t i on  GA.  F o r  each of these tests, the 
hypothes i s  tha t  the price var iances  of  bo th  s table  and  uns table  case are  the same 
was rejected in favor  of  the hypothes i s  tha t  the var iance  of  the cobweb  uns table  
case is grea ter  than  tha t  of  the cobweb  stable case. 
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7. Conclusion 

Two GA cobweb model designs were developed, the single-population and 
the multiple-population GA. In the single-population GA design, each firm has 
only one string which it uses for its decision making. In the multiple-population 
GA design, each firm is endowed with a population of strings, a collection of 
competing rules, for its decision making. In every time period, based on the 
rules' previous-period performance, a firm chooses one among them as its actual 
decision about how much to produce in that period. The mechanism for a choice 
of a particular string as the actual decision rule resembles the mechanisms 
employed in parallel algorithms that are used in models of human cognition. 7 
A common feature is the competition of alternative rules in which the probabil- 
ity of winning the competition is determined on the basis of a rule's past 
performance in a given environment. 

Two versions of the GA, basic and augmented, were used in computer 
simulations of both GA designs. Besides reproduction, crossover, and mutation, 
which are the operators of the basic GA, the augmented version also includes an 
election operator. This operator has been designed and added to the algorithm 
in order to overcome difficulties related to the way mutation influences the 
convergence process. 

The single-population augmented GA and the multiple-population aug- 
mented GA converged in simulations to rational expectations equilibrium 
values for the cobweb stable and unstable case. Both single-population basic GA 
and multiple-population basic GA exhibited fluctuations, without settling to 
rational expectations equilibrium values. 

The results of the cobweb experimental economies were compared to the 
behavior of the GA and of three other learning algorithms (least squares learning 
algorithm, algorithm in which agents form cobweb expectations, sample average 
of past prices). The experimental economies do not exhibit divergent patterns for 
those parameter values for which the cobweb expectations and the least squares, 
for example, diverge and for which, at the same time, GA converges. The sample 
average of the past-price adaptive scheme is characterized by the smooth 
convergence to rational expectations equilibrium values for the cobweb stable 
case and the cobweb unstable case. Thus, it does not capture fluctuations 
around the equilibrium values observed in the experiments. At the same time, 
the GA exhibits fluctuations prior to convergence. Since GA price variance of 
the cobweb unstable case is greater than the price variance of the stable case, the 
GA captures well the same feature observed in the experimental data. 

In general, when compared to the other algorithms that were used in 
modeling of learning in the cobweb environment, the GA requires less prior 

7See, for example, Rumelhart, McClelland, and the PDP Research Group (1987), Holland et al. 
(1986), and Edelman (1987). 
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competence in the specific task facing the agents. Most of these schemes assume 
that agents know how to maximize their objective function, whereas such an 
assumption is not required within the GA framework. Instead, while learning 
about their environment, agents also learn how to maximize their objective 
functions. 

This feature of the GA behavior is similar to the characteristics of human 
behavior observed in experiments. On one hand, choice surveys and informal 
subject debriefing suggest that people do not solve their decision problems by 
applying logic and techniques used by economists to solve the same models. On 
the other hand, behavior observed in experimental economies (supply and 
demand, oligopoly, bargaining, etc.) is often consistent with the predictions of 
market theories. As Smith (1989) suggests, changes in the reference frame or 
norms of behavior over time are induced by the invisible reality of entry or exit 
opportunity costs and therefore observed adaptation may be imposed upon 
agents who need not have a cognitive grasp of the causes that are driving changes. 

By the same token, economies in which agents that use the GA to update their 
beliefs start out with a variety of initial beliefs, but those beliefs that cannot 
withstand the competition of better performing rules are eliminated from the 
population. Agents do not have a cognitive grasp of the causes that are driving 
changes. The whole adaptation is based on the ability to generate new beliefs 
randomly and on the survival of the fittest among competing rules. 

Appendix 1 
At each period t, firm i (i = 1 . . . . .  n) chooses an action qLt~[0, q]. The q~,t 

is approximated by an/-length string written over binary alphabet {0, 1}. For 
example, if I = 3, then the choice is given by one of eight possible binary strings 
with the following interpretation: 

Action: Interpretation 

0 0 0: qi , t  = 0 

1 0 0: ql,t = 1 x(~/7) 

0 1 0: q i . ,=2x (q /7 )  

0 1 0: q / . ,=3x (q /7 )  

0 0 1: q i , t=4x (q /7 )  

1 0 1: q i , , = 5 x ( q / 7 )  

0 1 1: q i , t=6x(q /7 )  

1 1 1: ql , t=7x(q /7)  

As 1 increases, a finer partition of the choice set is allowed. 
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Appendix 2 

If one wants to test the same hypothesis that Wellford tested on her experi- 
mental data (i.e., that the price variance of the unstable cobweb treatments is 
equal to that of the stable treatments) on data generated by the GA, two 
different approaches can be taken. 

One approach is to assume that agents use the same set of values of crossover 
and mutation rates in all experiments, and for both stable and unstable cobweb 
case. With this assumption, data used for the hypothesis testing is generated by 
a single set of genetic operator values. The alternative approach is to assume 
that agents use different sets of values in different experiments. 

Besides the fact that the price variance observed in cobweb stable experiments 
was lower overall than the price variance in the unstable cases, there were also 
substantial differences in the price variance across experiments of the same 
cobweb type. In some of the cobweb stable experiments, the price remained close 
to the equilibrium price throughout the whole experiment with the resulting low 
price variance. In others, it exhibited substantial fluctuations. This was observed 
in the cobweb unstable experiments as well. 

On the other hand, in GA simulations, different sets of genetic operator values 
generate different values of price variance. Higher rates of crossover and muta- 
tion generate, on average, higher price variance, while lower genetic operator 
rates result in lower price variance. Thus, a set of observations used for the 
computations of variance in price of each cobweb type should consist of data 
generated with the whole range of values of crossover and mutation rates. 

For  the first approach, data was generated conducting 20 iterations for each 
set of genetic operator values. Each iteration lasted for 30 generations and was 
initialized with a different seed for the random number generator. All sets of 
values were implemented for both stable and unstable cobweb case (20 iterations 
for each). The same sequence of seed numbers was used for each set of values. 

The null hypothesis that the variance in price across all periods for unstable 
cobweb type for a single set of genetic operator rates is equal to that of stable 
cobweb type for the same set of crossover and mutation rates was tested for each 
of the above specified set of values, at 5% significance level. It was rejected in 
favor of the hypothesis that the variance in price is greater in the unstable than 
in the stable case for each set of values. 

Data for the second approach to hypothesis testing was generated conducting 
one iteration for each set of the genetic operator values. Each iteration lasted for 
30 generations. The whole simulation consisted of 20 iterations with 20 different 
sets of values. One simulation was performed for the cobweb stable case and one 
for the unstable case, using the same sequence of genetic operator rates for both 
cases. Data generated in a single simulation for each cobweb type represented 
the basis for the calculation of the respective price variances. Crossover rates 
varied from 0.6 to 0.9 and were combined with mutation rate values of 0.0033 
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anO O.O33. T h e  h y p o t h e s i s  tha t  the  pr ice  v a r i a n c e s  o f  the  s t a b l e  a n d  unstable c a s e  
are the same was rejected again, at 5% significance level, in favor of the 
hypothesis that the variance of the cobweb unstable case is greater than that of 
the cobweb stable case. 
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