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Preface

On July 9 and 10, 2001, the Political Science Program of the National Science Foun-

dation (NSF) convened a Workshop seeking ways for improving technical-analytical

pro�ciency in Political Science.1 This workshop, termed the Empirical Implications of

Theoretical Models (hereafter EITM) Workshop, suggested constructive approaches

the NSF Political Science Program could employ to foster linkages between formal

and empirical modeling.2

The workshop acknowledged that a schism had developed between those who en-

gage in formal modeling focusing on quantifying abstract concepts mathematically,

and those employing empirical modeling emphasizing applied statistics.3 As a con-

sequence, a good deal of research in political science is competent in one technical

area, but lacking in another. To put this another way, the impaired competency is

1The EITM Workshop was recorded and transcribed.
The written transcript is available on the NSF Political Science Pro-

gram Web Site: www.nsf.gov/sbe/ses/polisci/reports/eitm709.pdf and
www.nsf.gov/sbe/ses/polisci/reports/eitm710.pdf .
A report of the EITM initiative is also available at:

www.nsf.gov/sbe/ses/polisci/reports/pdf/eitmreport.pdf.
2A quantitative model can be characterized as a construct that is represented by a set of logically

� and in this case � quantitatively connected variables. Quantitative models include formal
analysis (modeling) and applied statistical analysis. Formal analysis (i.e., social choice, linear
di�erence equations, and di�erential equations) refers to deductive modeling that includes a theorem
and proof presentation or computational modeling requiring simulation. Applied statistical analysis
involves data analysis (from experimental or secondary sources) using statistical tools. We use the
terms analysis and modeling interchangeably.
In addition, the linkage of formal and applied statistical analysis � the form of methodological

uni�cation described in this book � possesses important attributes that aid in falsi�cation, predic-
tive precision and, ultimately, scienti�c cumulation. Formal models, for example, force clarity about
assumptions and concepts; they ensure logical consistency, and they describe the underlying mech-
anisms, typically behavioral, that lead to outcomes (Powell 1999: 23-39). The other component
part of methodological uni�cation � applied statistical models and tests � provide generalizations
and rule out alternative explanations through multivariate analysis. Applied statistics assist in
distinguishing between causes and e�ects, allow for reciprocal causation, and also help assess the
relative size of the e�ects.

3The participants in the EITMWorkshop were senior scholars with research experience in various
technical-analytical areas and proven track records in activities that have improved the technical-
analytical expertise in various sciences.
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re�ected by either a formal approach with substandard (or no) empirical tests or an

empirical approach without formal clarity. This �siloed� research contributes to a

failure to identify the proximate causes explicated in a theory and, in turn, increases

the di�culty of achieving a meaningful increase in scienti�c knowledge.

EITM was also thought to combat a particular set of applied statistical practices

that had developed to the point where many statistical procedures were not intended

to �x inaccuracies in speci�cation. Rather, they were used to improve the signi�cance

levels of estimated parameters � regardless of the structural failure of a model. An

emphasis on the t-statistic displaced emphasis on whether a model had systematic

(as opposed to random) error.

In this book we extend and address these initial Workshop concerns � and more.

Purpose

This book provides a framework for demonstrating how to unify formal and empirical

analysis not only for political science questions but for questions in the social sciences.

By arguing for the scienti�c bene�ts of methodological uni�cation, it is shown that

the linkage between formal and empirical analysis assists in �nding underlying causal

mechanisms.4 We hasten to add that methodological uni�cation in the social and

behavioral sciences is not new and can be traced primarily to the accomplishments

of the Cowles Commission in the 1930s.5

With these potential scienti�c bene�ts in mind, EITM is also a response to some

current methodological practices (See Achen 2002, 2005 for a review). These prac-

tices, for example, borrow applied statistical tools to improve upon older techniques,

but this largely comes at the expense of the search for identi�ed and invariant rela-

tions. Indeed, with this mindset, the creation of methodologies isolating structural

parameters are secondary to the use of applied statistical techniques that end up

manipulating standard errors and associated t-statistics. There is no use of formal

modeling to aid in this process of identifying causal relations. Moreover, there is

4For an extensive and important discussion of this issue and many others relevant to EITM, see
Morton (1999).

5Created in the 1930s, the Cowles Commission was designed �to foster the development of
logical, mathematical, statistical methods of analysis for application in economics and related social
sciences.� (See http://cowles.econ.yale.edu/about-cf/about.htm). By the mid-1960s the Cowles
Commission approach was a standard quantitative framework in economics. However, the approach
came under criticism in the early 1970s. Not only were the quantitative models forecasting poorly,
but the approach was failing to appropriately address the issues of identi�cation and invariance.
Chapter 1 discusses these two issues in greater detail.
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little e�ort to seek uni�cation between formal and empirical approaches.

A few political scientists did see the shortcomings associated with disjointed quan-

titative work. For example, Aldrich argued in 1980:

Empirical observation, in the absence of a theoretical base, is at best de-

scriptive. It tells one what happened, but not why it has the pattern one

perceives. Theoretical analysis, in the absence of empirical testing, has a

framework more noteworthy for its logical or mathematical elegance than

for its utility in generating insights into the real world. The �rst exercise

has been described as �data dredging,� the second as building �elegant

models of irrelevant universes.� My purpose is to try to understand what

I believe to be a problem of major importance. This understanding can-

not be achieved merely by observation, nor can it be attained by the

manipulation of abstract symbols. Real insight can be gained only by

their combination (page 4).

More than a decade later Bartels and Brady (1993) echoed these sentiments arguing

that, in the �eld of political methodology, �there is still far too much data analysis

without formal theory � and far too much formal theory without data analysis�

(page 148). In her important treatment on the subject, Morton (1999) discusses

these issues in the following terms:

Political Scientists have become adept at applying � from economics and

other disciplines � exciting new statistical methods to analyze data. . . Yet

this increase in complexity is not without costs. As the use of methodolog-

ical techniques in political science has advanced, researchers have found

that often their empirical study leads to more questions, questions that

need theoretical input. However, because little existing theory is relevant

or because the well-developed theory that does exist seems unconnected

to the empirical issues, typically the response is to use more sophisticated

methods or data gathering to answer the questions without reference to

a fully developed theory. But these new methods often lead to still more

questions, which in turn result in the use of more sophisticated meth-

ods to gather or analyze the data. The connection to theory seems to

get lost in the methodological discussion. Rarely do researchers take the

empirical results and rework the theoretical framework that began the

discussion (page 3).
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These concerns emerged in the NSF EITM Workshop held in 2001. The NSF EITM

Report concluded the sources for the methodological status quo were deep and would

be di�cult to overcome. While the issues could extend to various social science

disciplines, the report contrasted political science and economics. In the case of

political science:

There are at least two reasons for this state of research competency. One

is that rigorous formal and empirical training is a somewhat recent devel-

opment in political science. Another is that there are signi�cant obstacles

in the current political science training environment. The �rst obstacle

is time. Students who desire training in both formal and empirical mod-

eling will take longer to get a Ph.D. and most graduate programs do

not have the resources to support students for more than four or �ve

years. Consequently, students take the sequence of formal or empirical

modeling classes but seldom both sequences. In addition to classes in

formal or empirical modeling, students must take classes in their sub-

stantive area. For students in comparative politics there are �eld work

and language requirements. What normally is sacri�ced, then, is either

the formal or empirical modeling sequence. Taking a single course in for-

mal and empirical modeling is not nearly enough to develop competency

to do research. The second obstacle to establishing formal and empirical

modeling competency centers on the training itself.

Because of its longer and more extensive formal and empirical modeling traditions

� due in part to the in�uence of the Cowles Commission � the EITM Report found

a way to break the status quo in training could be found in economics.

The economics discipline is illustrative. Economics graduate students are

required to take one full year (usually) of mathematics for economists.

This mathematical (and quantitative) approach is reinforced in substan-

tive courses which typically are taught as an analytic science in a theorem-

proof mode (page 7).

Ideas

To change the current methodological emphasis � and to build a cumulative social

science � an EITM framework is presented in this book. Several ideas provide a

foundation for this theme. The �rst idea is the ultimate focus of a model and test is
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to support a cumulative scienti�c process geared toward �nding a causal mechanism.

The ability of a researcher to parse out speci�c causal linkages among the many

factors is fundamental to the scienti�c enterprise. But, it also should be noted that

no one engaged in the scienti�c enterprise would call �nding causal mechanisms

� easy. What makes methodological uni�cation so useful in this process is that

specifying a model linking both formal and empirical approaches alerts researchers

to outcomes when speci�c conditions are in place.

To be clear, then, prediction and predictive accuracy are important aspects of

the scienti�c inquiry and scienti�c cumulation, but they do not exist in a vacuum.

Understanding the workings of a system (particulary through formalization), which

can sometimes occur long before tests and data are available, is a coequal partner in

the process. As Coase (1994) argues:

The view that the worth of a theory is to be judged solely by the extent

and accuracy of its predictions seems to me wrong. Of course, any theory

has implications. It tells us that if something happens, something else

will follow, and it is true that most of would not value the theory if we

did not think these implications corresponded to happenings in the ...

system. But, a theory is not like an airline or bus timetable. We are

not interested simply in the accuracy of it predictions. A theory also

serves as a base for thinking. It helps us to understand what is going on

by enabling us to organize our thoughts. Faced with a choice between a

theory which predicts well but gives us little insight into how the system

works and one which gives us this insight but predicts badly, I would

choose the latter...No doubt...that utlimately theory would enable us to

make predictions about what would happen in the real world; but since

these predictions would emerge at a later date...to assert that the choice

between theories depends on their predictive powers becomes completely

ambiguous (pages 16-17).

In sum, the EITM framework is a means � via the dialogue it creates between theory

and test � to attain a valid understanding of the workings of a system and assessing

a theory's predictive accuracy.

A second idea is that the methodological isolation of �elds and sub-�elds in

political and social sciences is the status quo. Among the consequences of this

isolation is the schism between formal and empirical modeling and the concomitant

weaknesses in how social science researchers specify and test their models. A major
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objective of this book is to select examples from various sub�elds or disciplines for

creating an awareness of EITM-type research and breaking down the barriers to

achieving methodological uni�cation.

The third idea follows the second where EITM collaborations in education, knowl-

edge dissemination, and research result in promoting interdisciplinary interactions.

The EITM framework presented here originates in political science, but it is based

on the original work of the Cowles Commission � a group of quantitatively inclined

economists.6 The contributions of the Cowles Commission rest, in part, on a sci-

enti�c vision involving the merging of formal and applied statistical analysis. The

basis for this linkage is the notion that random samples are governed by a latent and

probabilistic law of motion (Haavelmo 1944; Morgan 1990). Further, this view argues

that formal models, related to an applied statistical model, could be interpreted as

creating a sample drawn from the underlying law of motion. A well-grounded test

of a theory could be accomplished then by relating a formal model to an applied

statistical model and testing the applied statistical model.7

A fourth idea is that EITM extends the Cowles Commission approach.8 As noted

earlier, the Cowles Commission contributed to the rise of quantitative methodology

in many ways. The Cowles methodology created new research aimed at determining

valid inference by highlighting issues such as identi�cation and invariance. For the

�rst issue, identi�cation, rules (i.e., rank and order conditions) were devised so that

an equation of a model could reveal one and only one set of parameters consistent with

both the model and the observations (See, for example, Koopmans 1949). A second

issue involved the invariance of a (structural) relation. If an underlying mechanism

is constant in the past and future, then the path of the relevant variable(s) will

be predictable from the past, apart from random disturbances (See, for example,

Marschak 1947, 1953). There was no concerted attempt assuring this latter condition

obtained and this failure invited both theoretical and empirical criticisms.

These criticisms were fundamental and they �gure prominently in social science

6Morgan (1990) provides an extensive historical account of the contributions of the Cowles
Commission.

7Following Haavelmo (1944), this probability approach involved the de�nition of a precise
stochastic model representing the phenomenon under study and the generation of the data. In-
ference was to be determined within the framework of a complete model, where the model is
characterized by as �many relationships as variables to be explained� (Morgan 1990: 114). The ap-
plication of the probability approach resulted in models (built mostly by economists) appearing as
systems of equations with additive random terms. Estimation and testing was done in the context
of these complete representations. A typical estimation procedure was ordinary least squares.

8Note the EITM framework also shares similarities with Sociologist Guillermina Jasso's (2004)
Tripartite Structure for Social Science Analysis. See Chapter 12.
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progress. Consider that if one were to strictly adhere to the Cowles Commission ap-

proach we would, for example, forego the chance of modeling new uncertainty created

by shifts in behavioral traits (e.g., public tastes, attitudes, expectations, communi-

cation, and learning). The scienti�c consequence of this omission directly a�ects the

issues of identi�cation and invariance because these unaccounted behavioral shifts of

variables would not be linked with the other variables and speci�ed parameters. The

EITM framework is devised to deal with these behavioral dynamic concerns. It also

takes a more expansive view on the modeling enterprise. Not only does the EITM

framework make use of structural equation modeling associated with the Cowles

Commission, but it also includes alternative probability approaches, computational

methods, and experimental methods (See Poteete, Janssen, and Ostrom 2010).

In sum, the EITM framework builds on the Cowles Commission approach. This

framework takes advantage of the mutually reinforcing properties of formal and em-

pirical analysis addressing the challenge(s) above. In addition, this framework fo-

cuses on general behavioral concepts integral to many �elds of research but seldom

are modeled and tested in a direct way. EITM emphasizes discovering ways to model

human behavior and action and, thereby, aids in creating realistic representations

improving upon simple socio-economic categorization. Numerous social science disci-

plines focus a good deal of research e�ort on the interactions between agent behavior

and public policies. Yet, current research practices can fail to develop formal models

analyzing these interactions. Our approach emphasizes modeling behavior so new

uncertainty created by shifts in behavioral traits such as public tastes, attitudes,

expectations, learning, and the like are properly studied.9

Features

This book has several distinctive features. The �rst is a review of some current

methodological practices and how they undermine cumulative scienti�c progress.

We then discuss how EITM combats the overemphasis on the t-statistic and the

non-falsi�able statistical practices it engenders.

A second feature emphasizes the analytical and technical approach. Formal anal-

ysis is merged directly with empirical analysis (using data or possessing testable

implications or both). The EITM framework builds on the concepts and vision of the

9The framework developed also addresses the critique of the Cowles Commission approach leveled
by Sims (1980) on devising ways to �credibly� identify a model's parameters (Sims 1980; Freeman,
Lin, and Williams 1989). The present framework adds behavioral concepts and analogues, thereby
holding the potential to strengthen the credibility for various identi�cation restrictions.
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Cowles Commission but it also relies on a signi�cant background literature to serve

as the basis for adopting the EITM framework.

A third feature focuses on mechanism operationalization. Operationalizing mech-

anisms involves creating measurable devices (what we term analogues) on the formal

and behavioral side, but also on the empirical side. Behavioral concepts include (but

is not limited to) expectations, learning, social interaction, decision making, strategic

interaction, and more. Empirical concepts include (but are not limited to) persis-

tence, measurement error, simultaneity, prediction, nominal choice, and more. Tra-

ditional operationalization involves �nding measures for behavioral concepts. These

measures are usually a variable of some sort. Operationalizing mechanisms encom-

passes this tradition, but also extends it to include the use of operators, frameworks

(that can include variables), and tools to represent both behavioral and empirical

concepts.10

A fourth feature is that the book is self-contained. The examples and tools are

blended together so readers can learn how to develop the EITM approach. Each ex-

ample presented fosters this with appendices added to provide greater detail on the

tools used. Where possible the notation is in its original from the original sources.

Our view is that demonstrating the di�erences in notation gives readers an oppor-

tunity to see and think of things in ways they otherwise would not have.

What the Material in this Book Means for Your Re-

search

Who bene�ts from mastering the material in this book? By its very nature, this

book mixes formal analysis and applied statistical analysis. The book is designed

�rst to account for the di�erences between formal and empirical approaches, and

their respective intellectual outlook, skills, and training. In terms of outlook, formal

modelers typically emphasize, in minute detail, linkages between concepts, whereas

empirical modelers rarely spend their time parsing through minute details that may

not add to their understanding. Formal modeling also requires analytical, logical,

and mathematical modeling skills, while empirical modeling is inductive and, there-

fore, places emphasis on descriptive and statistical skills. Empirical modelers devote

their energies to data collection, measurement, and statistical matters, but formal

modelers focus on mathematical rigor.

10See Chapter 3 for more detail on this issue relating to the development of analogues.
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These di�erences are eliminated because the tools are merged in accordance with

the EITM framework. It is likely that a person using this book will have knowledge

with one technical tradition (formal or empirical), but they will also be given the

appropriate steps to solve parts less familiar. This is accomplished by not only

presenting the various tools and solution procedures but in also featuring examples

that may be applied to a variety of social science questions.

The book is presented at a technical level similar to econometric texts. The mar-

ket it is geared toward are primarily academic and policy. People most comfortable

with this material will be graduate students and academics. Policy analysts may

strengthen their analyses by applying this approach. This book is also useful as a

capstone course for students who have taken both formal and empirical courses.

As a �nal thought, and if we were to sum up the EITM framework, we would argue

it is a guide to uni�cation. But, there is no set formula for what tools to use. What

dictates the tools to use is how you characterize your idea. At that point you will need

to look in a tool box and use the speci�c formal and empirical techniques available

and appropriate. Our appendices serve this latter purpose. They are certainly not

the last word on what the mix is or should be. Competing characterizations are

appropriate and should be evaluated on their ability to represent accurately the

workings of the system as well as their predictive power.

The Plan of the Book

The book has two parts. Part I provides the background and framework. Chapter 1

gives a broad overview of how methodology and modeling are integral to the scien-

ti�c process. We discuss the fundamental scienti�c ideas � order, cause, and chance

� and how models can be used to attain these ideas. The discussion also includes

various academic institutions that gave rise to the development of formal and ap-

plied statistical modeling. These institutions are the precursors to methodological

uni�cation � and EITM.

Chapter 2 provides readers an analysis of some contemporary methodological

practices. Some of these practices (data mining, overparameterization, and sta-

tistical patching (�omega matrices�)) contribute to noncumulation. An example is

provided on how these practices failure to provide a valid understanding of a system

or predictive power.

The EITM framework is presented in Chapter 3. Chapter 3 begins with an ex-
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ample of methodological uni�cation related to the Cowles Commission � the Solow

model (1956). An analysis covering the shortcomings of these early forms of method-

ological uni�cation is presented. The EITM framework then follows.

Part II of the book provides several examples from a variety of research areas in

political science, political economy, economics, and sociology. Each chapter is self

contained: after the example is presented and related to EITM, there is a discussion

of how the example can be extended.11 As mentioned earlier, each chapter also

provides an appendix giving a thorough description of the formal and empirical tools

used in the speci�c example.12 The tool sections provide the basis for creating an

analogue for each concept.

Chapter 4 focuses on economic voting. Using Alesina and Rosenthal's (1995)

model it is demonstrated how the model can be extended (See Suzuki and Chap-

pell 1996; Lin 1999). From an EITM perspective this involves the linkage of the

behavioral concepts of expectations and uncertainty with the empirical concept of

measurement error. The tools in this chapter include the theory of rational expec-

tations (use of linear projections) solution procedures and the technique of signal

extraction. The empirical tools include error-in-variables regression and the relation

between signal extraction and error-in-variables regression.

Chapter 5 presents an example of macropartisanship and EITM. The EITM link-

age cements the relation between the behavioral concept of expectations with the

empirical concept of persistence. An example of party identi�cation that provides

a linkage between expectations and persistence is Clarke and Granato (2004). The

appendix in this chapter includes an extended discussion expectations modeling, in-

cluding the use of di�erence equations (various orders), their solution procedures,

and stability conditions. Along with these relevant formal modeling tools is a com-

prehensive discussion of the empirical estimation and properties of autoregressive

processes.

Chapter 6 presents a macro political economy example, relating policy to in�a-

tion. The macro-policy example used in this chapter is Granato and Wong's (2006)

real wage contract model. As with Chapter 5, the EITM linkage o�ers a relation

11The exception is Chapter 12. That chapter introduces an alternative framework for method-
ological uni�cation with an example from sociology. The appendix explores an example from the
economics discipline.

12The appendices can cumulate since there can be some overlap in the tools that are used for
each chapter.
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between the behavioral concept of expectations and the empirical concept of persis-

tence. The appendix in this chapter provides an extension of the uses of di�erence

equations and adaptive learning procedures.

In Chapter 7, the focus is on social-interaction and learning. The EITM linkage

involves relating and unifying the behavioral concepts of expectations, learning, and

social interaction with the empirical concept of simultaneity. The example used is

Granato, Lo, and Wong (2011). The tools section in this chapter include discussions

of techniques in modeling expectations and learning (Evans and Honkapohja 2001).

The empirical tools include time series econometrics and multi-equation estimation.

Chapter 8 gives an example of the relation between political parties and political

representation. One well researched area in the literature centers on when and why

voters choose one party over the others based on the relative political positions of

parties. The work of Kedar (2005) is used in this chapter. The EITM linkage in this

example is between decision-theoretic models with discrete outcomes. The tools in

this chapter include an introduction to discrete choice modeling and decision theory.

Voter turnout is the topic in Chapter 9. Here the EITM linkage is the behavioral

concept of learning combined with the empirical concept of discrete choice. The

example we use is Achen (2006). The tools in this chapter include the theory of

Bayesian learning and discrete choice statistical models.

EITM approaches to international con�ict and cooperation is the subject of Chap-

ter 10. The EITM linkage includes the behavioral concept of bargaining and strategic

interaction combined with the empirical concept of discrete choice. This linkage is

captured in Quantal Response Equilibrium (QRE). QRE�which merges Game The-

ory and discrete choice models � was developed by McKelvey and Palfrey (1995,

1996, 1998) and was applied by Signorino (1999). In this chapter we use Leblang's

(2003) application to currency crises. The tools introduced in this section involve

the elements of Game Theory, discrete choice modeling, and how these inform QRE.

In Chapter 11 we show EITM is not simply about closed form solutions or sec-

ondary data sources. EITM also includes tools with numerial solution procedures

and experiments. Agent based modeling is a case in point. Agent-based modeling

(ABM) has been an important element of understanding complex social and eco-

nomic systems. The EITM linkage is between elements of social interaction (e.g.,

imitation, invention, communication, and examination) and prediction. We use the

work of Arifovic (1994) on learning dynamics and contrast her results with experi-

mental results of Wellford (1989). The tools we introduce in this chapter involve the
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elements of genetic algorithm simulations and adaptive learning simulations.

An alternative uni�cation framework is presented in Chapter 12. Jasso's (2004)

Tripartite Structure of Social Science Analysis provides a framework that shares sim-

ilarities to EITM but also provides a unique perspective. One important emphasis

in Jasso's framework is her focus on probability distributions � and the linkage be-

tween formalization with known distribution functions. Moreover, Jasso's uni�cation

method extends to measurement issues. The example we use in this chapter focuses

on a theoretically motivated index measure of justice and relates this index to gender

gaps in earnings. The appendix in this chapter di�ers from others. We deal again

with the linkage of behavioral theory and measurement, but this example is from

economics. Speci�cally, we describe how monetary aggregates are based on decision

theory, aggregation theory, and index number theory.

Chapter 13 concludes the book. An overview of the obstacles in implementation

as well as how training can be reoriented is discussed. The chapter ends with a

discussion of how future developments in methodological uni�cation can assist both

basic and applied research.
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Chapter 1

Insights and Pathbreaking

Institutions

EITM is a natural outgrowth of prior modeling and testing approaches � research

methods � aimed at fostering social scienti�c cumulation.1 The enduring e�ort �

instituting the ideas � to create modeling and testing methods is of vital importance

to the social sciences since it �provides a shared language so that even scholars

thinking problems with little substantive overlap. . . can communicate e�ciently and

productively. It means that we begin with common �rst principles, and proceed

with our research in a way that is commonly understood� (Gerber 2003: 3). Or, as

Pearson (1957, 2004) states: �the unity of all science consists alone in its method, not

in its material. . . It is not the facts themselves which make science, but the method

by which they are dealt with� (page 12).2

With the attributes of shared (and improving) standards, language, and technical-

analytical competence, research methods allow us to �nd ways to implement the

fundamental scienti�c ideas of order, cause, and chance (Bronowski 1978):3

1This chapter borrows from sources such as: Gow (1985), Landreth and Colander (2002), Morgan
(1990), Poteete, Janssen and Ostrom (2010: 3-27), Schumpeter (1954, 1994), Sowell (1974, 2006),
Worcester (2001), and Zellner (1984).

2The American Heritage Dictionary de�nition of science is �The observation, identi�cation, de-
scription, experimental investigation, and theoretical explanation of phenomena.�

3Order is de�ned as �the selection of one set of appearances rather than another because it gives
a better sense of the reality behind the appearances� (Bronowski 1978: 48). Order can require
devices which depict relations and predictions. Abstract models and the use of mathematics are
natural devices. Cause � determining what brings about an e�ect � was thought by early social
scientists (or more accurately political economists) to be a sequential process (See Hoover (2001a:
1-28) for a review of David Hume's in�uence). For an extensive treatment see Pearl (2000), but see
also Kellstedt and Whitten (2009: 45-66) and Zellner (1984: 35-74) for a discussion of causality in
applied statistics and econometrics respectively. As for the concept of chance, Bronowski (1978) is
critical of what he believes is the misuse of the term �cause� and prefers to link it with probabilistic

19
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1.1 The Utility of Models and Modeling4

Order, cause, and chance can be e�ectuated by the use of models describing hypo-

thetical worlds whose predictions have testable potential and assist in the system-

atization of knowledge.5 With models one may �put all these e�ects together, and,

from what they are separately. . . collect what would be the e�ect of all these causes

acting at once� (Sowell 1974: 137-138). As Gabaiz and Laibson (2008) argue:

Models that make quantitatively precise predictions are the norm in other

sciences. Models with predictive precision are easy to empirically test,

and when such models are approximately empirically accurate, they are

likely to be useful (page 299).6

If models possess attributes which enhance the scienti�c process, then how do we go

about constructing them? Valid models make use of both deductive and inductive

inference. Deductive inference, where �the conclusion is obtained by deducing it from

other statements, called premises of the argument. The argument is so constructed

that if the premises are true the conclusion must also be true� (Reichenbach 1951:

37).

Inductive inference � because it relies on making inferences from the past to

predict the future:

. . . enables us to associate probabilities � cause and chance � with

propositions and to manipulate them in a consistent, logical way to take

account of new information. Deductive statements of proof and disproof

are then viewed as limiting cases of inductive logic wherein probabilities

approach one or zero, respectively (Zellner 1984: 5).

statements � �chance� � which �replaces the concept of the inevitable e�ect by that of the probable
trend� (page 87). Modern conceptions on the utility of mathematics also point to how applied
statistical analysis aids in the idea of chance (e.g., statistical signi�cance).

4There are numerous discussions on the utility of formal analysis and modeling. In political
science see Wagner (2001) and Wagner (2007: 1-52) for a review of the ongoing debate over modeling
and an application to theories of international relations. See Clarke and Primo (2012), Krugman
(1994, 1998), Wolpin (2013), and Jasso (2002) for discussions in the �elds of political science,
economics, and sociology, respectively.

5See Granato (2005) for a discussion of these issues.
6The EITM framework can be applied to either observational designs or more controlled settings

(See Freedman, Pisani, and Purves (1998: 3-28) and Shively (2010)). For a review of some of the
more important developments on research design issues (e.g., counterfactuals) and causality see
Morgan and Winship (2007) and Brady (2008). An example of multiple designs and multiple
methods can be found in Poteete, Janssen, and Ostrom (2010).
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Abstract modeling in the social sciences traces its origins to the early political

economists.7 The initial modeling e�orts were deductive in orientation. Mathe-

matics and mathematical models were argued as an attribute for determining order

and cause because their logical consistency can be veri�ed using the available oper-

ations of mathematics. David Ricardo was one of the �rst to make use of �abstract

models, rigid and arti�cial de�nitions, syllogistic reasoning,� and applied the conclu-

sions from the highly restrictive models directly to the complexities of the real world

(See Sowell 1974: 113 and Landreth and Colander 2002: 113-115).

These early modeling e�orts were not without detractors.8 Richard Jones, for

example, argued modeling generalizations were invalid if they ignored things that

exist in the world including institutions, history, and statistics. Robert Malthus,

Jean Baptiste Say, and J. C. L. Sismonde also criticized attempts at premature

generalization (Sowell 1974: 114-116).

These critics gave no consideration that mathematics might be used to contribute

to conceptual clarity rather than to derive numerical predictions. Antoine Augustin

Cournot pointed out that mathematical analysis was used �not simply to calculate

numbers� but to �nd �relations� (Sowell 1974: 117-118). The criticisms endured.

More than a century later Kenneth Arrow (1948) provided the following defense of

mathematical modeling:

It is true that there are certain limitations of mathematical methods in

the social sciences. However, it must be insisted that the advantages are

equally apparent and may frequently be worth a certain loss of realism.

In the �rst place, clarity of thought is still a pearl of great price. In

particular, the multiplicity of values of verbal symbols may be a great

disadvantage when it comes to drawing the logical consequences of a

proposition (page 131).9

In the early 1920s, inductive inference � and linking cause to chance and providing

a basis for regression analysis and econometrics � was given important support

when the sampling distribution(s) for regression coe�cents were established (Fisher

7See Sowell (1974) and Landreth and Colander (2002), but for subsequent changes in the use of
mathematics see Weintraub (2002).

8In the 17th and 18th centuries a break occurred between those who believed political economy
should base its method on rigor and precision versus those who emphasized the certainty of the
results. The debate focused in part on whether political economic principles should be founded on
abstract assumptions or factual premises (Sowell 1974: 117-118).

9There are numerous examples where the use of mathematical models uncover logical inconsis-
tencies that would be more di�cult to �nd using verbal argument(s). Viner (1958), for instance,
discusses how the aid of mathematics lead to clari�cation on the uses of average and marginal cost.
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1922). This latter contribution was an important precursor to what has been called

the �probability approach� to statistical inference (Haavelmo 1944) � and e�orts to

link deductive and inductive approaches using formal analysis and applied statistical

tools.

1.2 Institutional Developments

While EITM draws inspiration from the Cowles Commission, it would be a mistake

to limit it only to Cowles. The EITM framework builds on a variety of formal

institutions and organizations in the social sciences. These institutions � ranging

from research organizations to university departments � developed and supported

the antecedents of EITM.10 The entities that supported the creation and development

of formal and applied statistical analysis include (but are not limited to):

• The Social Science Research Council (SSRC)

• The Econometric Society and the Cowles Commission

• The Political Science Department at the University of Rochester

• The Political Methodology Society.

1.2.1 The SSRC

The 1920s saw movement in the social sciences toward improving quantitative meth-

ods of study.11 One leading �gure was Charles Merriam who worked to alter the

methods of political study (Merriam 1921, 1923, 1924; Merriam et. al., 1923). At

that time he believed the existing methods of analysis failed on a fundamental level

� identifying underlying mechanisms:

The di�culty of isolating political phenomena su�ciently to determine

precisely the causal relations between them. We know that events occur,

but we �nd so many alternate causes that we are not always able to

indicate a speci�c cause. For the same reason we are unable to reach an

expert agreement upon the proper or scienti�c policy to pursue and by

the same logic we are unable to predict the course of events in future

situations (Merriam 1923: 288).

10An expanded sample can be found in Mitchell (1930, 1937: 58-71).
11Early political science examples can be found in Mayo-Smith (1890), Ogburn and Peterson

(1916), and Ogburn and Goltra (1919).
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Merriam stressed the need to examine and use multiple methods from numerous

social science disciplines (i.e., economics, statistics, history, anthropology, geography,

psychology).

In place of literature Merriam favored a better organized and more con-

sciously scienti�c and social psychological approach to the study of human

behavior. Statistics and other empirical tools would play a critical role

in shifting the political and social sciences closer to the �hard sciences�

(Worcester 2001: 16-17).

To accomplish these goals, Merriam proposed an interdisciplinary institution to help

promote his vision � the SSRC. In the 1920s, the SSRC was considered the �rst

national organization of all the social sciences, and from the outset its goal has been

to improve the quality of, and infrastructure for, research in the social sciences.12

Among the contributions of the SSRC has been its multidisciplinary outlook and

emphasis on creating and using data.

1.2.2 The Econometric Society and the Cowles Commission

The creation of the SSRC was followed by two other signi�cant institutional devel-

opments.

The Econometric Society was established in 1930...The Society greatly

facilitated academic exchanges between European and American scholars

not only in the young econometrics profession but also in mathematical

statistics. It thus rapidly promoted the growth of econometrics into a

separate discipline (Duo 1993: 5).

The Econometric Society sought to use mathematics and statistics to increase the

level of rigor in the formulation and testing of economic theory. The society initially

featured scholarly meetings and the creation of the journal Econometrica.

The Cowles Commission followed in 1932. It was a:

research institution which contributed uniquely to the formalization of

econometrics (See Christ 1952; Hildreth 1986). The Commission had a

close connection with the Econometric Society from its beginning (Duo

1993: 5).

12Another important research institution, the National Bureau of Economic Research (NBER),
was founded in 1920. The NBER had a narrower disciplinary focus (economics), but in many ways
shared the same basic vision as the SSRC.
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The Cowles Commission advanced the rise and adoption of econometric methodology

in two ways.13 Recall that it developed the probability approach. This approach

highlighted the issues of identi�cation and invariance.14 Identi�cation was central

since a goal of econometrics is to determine the true values of the parameters among

all the possible sets of values consistent with the data and with the known or assumed

properties of the model.15

The second issue was the invariance of a relation. If structure is known to remain

in the future what it was in the past, and if the auxiliary variables have constant

values through both periods, the path of each variable will be predictable from the

past, apart from random disturbances. By addressing the issues of identi�cation and

invariance, the probability approach � and the linkage of formal and empirical anal-

ysis � provides a connection to falsi�ability, predictive precision, and the workings

of a system.16 We would add that models that have these properties also facilitate

13Econometric research associated with the Cowles Commission includes (but is not limited to):
Cooper (1948), Haavelmo (1943, 1944), Hood and Koopmans (1953), Klein (1947), Koopmans (1945,
1949, 1950), Koopmans and Reiersol (1950), Marschak (1947, 1953), and Vining (1949). For further
background on the Cowles Commission consult the following URL: http://cowles.econ.yale.edu/.

14The intuition behind the terms identify (i.e., identi�cation) and invariant (i.e., invariance) are

as follows. For applied statistical models identi�cation relates to model parameters (e.g., β̂) and
whether they indicate the magnitude of the e�ect for that particular independent variable. Or,
in more technical terms, �A parameter is identi�able if di�erent values for the parameter produce
di�erent distributions for some observable aspect of the data� (Brady and Collier 2004: 290).
In applied statistical practice, invariance refers to the constancy of the parameters of interest.

More generally, �the distinctive features of causal models is that each variable is determined by a
set of other variables through a relationship (called �mechanism�) that remains invariant (constant)
when those other variables are subjected to external in�uences. Only by virtue of its invariance do
causal models allow us to predict the e�ect of changes and interventions...� (Pearl 2000: 63).

15An equation of a model is declared to be identi�able in that model if, given a su�cient (possibly
in�nite) number of observations of the variables, it would be possible to �nd one and only one set
of parameters for it that are consistent with both the model and the observations.

16Gabaix and Laibson (2008) argue that falsi�ability and predictive precision are among the key
properties of useful models (See Gabaix and Laibson 2008). �A model is falsi�able if and only if the
model makes nontrivial predictions that can in principle be empirically falsi�ed� (page 295). �Models
have predictive precision when they make precise � or �strong� � predictions. Strong predictions
are desirable because they facilitate model evaluation and model testing. When an incorrect model
makes strong predictions, it is easy to empirically falsify the model, even when the researcher has
access only to a small amount of data. A model with predictive precision also has greater potential
to be practically useful if it survives empirical testing. Models with predictive precision are useful
tools for decision makers who are trying to forecast future events or the consequences of new policies�
(page 295).
In the language of econometrics, falsi�cation and predictive precision require the mechanisms

relating cause and e�ect be identi�ed. There is a large literature devoted to identi�cation problems
(See, for example, Koopmans 1949, Fisher 1966, and Manski 1995), but we use identi�cation in
the broadest sense for purposes of attaining some order and underlying cause as well. Since we as
social scientists do not have controlled environments to conduct or inquiry, our e�orts to achieve
order and cause in our models can only come about probabilisitically � by chance.
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comparison between rival and competing theories over the same phenomena � and

can enhance scienti�c cumulation (Kuhn 1979).

The Cowles approach also drew criticism. These criticisms for the most part

focused on measurement and inferences issues (Keynes 1940) and questions about

predictive accuracy (Christ 1951). Despite the criticisms, the Cowles Commission

approach was widely adopted and by the mid-1960s was standard in quantitative

economics. However, during the 1970s more fundamental criticisms � regarding

invariance and identi�cation � arose.

In 1976, Robert Lucas questioned the fragility of invariance when the Cowles ap-

proach is used. His formal analysis demonstrated that models based on the Cowles

approach were fundamentally �awed in their ability to evaluate the outcomes of

alternative economic policies. The reason, he argued, is that in-sample estimation

provides little guidance in predicting the e�ects of policy changes because the param-

eters of the applied statistical models are unlikely to remain stable under alternative

stimuli.17

Sims (1980) later challenged the identi�cation procedures inspired by the Cowles

Commission. Sims argued against the reliance on �incredible restrictions� to identify

structural models. These restrictions had the e�ect of undermining an understanding

of the system. Sims o�ered a change in emphasis from focusing on individual coef-

�cients, as the structural modeling approach did, to VAR modeling with attention

given on the dynamic time series properties of an unrestricted (by theory) system of

equations.18

Despite these challenges, some of the basic tools and procedures of the probability

approach remain. One extension of the structural approach, in part a response

to Lucas's criticisms, is �real business cycle modeling� (RBC).19 Here the focus is

on isolating parameters and on making greater explicit use of theory at both the

individual and aggregate level of analysis. Where RBC's especially di�er from the

Cowles Commission is in the use of standard statistical signi�cance testing.20

17The Lucas critique is based on the following intuition: �...given that the structure of an econo-
metric model consists of optimal decision rules ... and that optimal decision rules vary systematically
with changes in the structure of series relevant to the decision maker, it follows that any change in
policy will systematically alter the structure of econometric models� (Lucas 1976: 41).

18Sims' methodology is grounded in probabilistic inference, imposing only enough economic the-
ory to identify the statistical models and carry out analyses of policy e�ectiveness. See Freeman,
Lin, and Williams (1989) for an application of VAR to political science questions.

19See Freeman and Houser (1998) for an application in political economy. For a critique of RBCs
see Sims (1996).

20The method involves computational experiments. These experiments rely on a sequence of
steps including: deriving the equilibrium laws of motion for the model economy from �well-tested
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1.2.3 The Political Science Department at the University of

Rochester

Thanks in part to the SSRC, there was a clear tendency in political science to promote

statistical methods.21 Methodological emphasis was placed on statistical correlation

and empirical testing and generally focused on psychological attitudes to derive em-

pirical generalizations. During the late 1950s and early 1960s William Riker and later

� the Department of Political Science at the University of Rochester � developed

positive political theory.22

The goal of positive political theorists is to make positive statements

about political phenomena, or descriptive generalizations that can be

subjected to empirical veri�cation. This commitment to scienti�cally ex-

plaining political processes involves the use of formal language, including

set theory, mathematical models, statistical analysis, game theory, and

decision theory, as well as historical narrative and experiments (Amadae

and Bueno de Mesquita 1999: 270).

Riker, while not averse to inductive reasoning, put an emphasis on the deductive

approach. In particular,

The Rochester school has emphasized deriving hypotheses from axioms.

Doing so reduces the risk that hypotheses are restatements of already

observed patterns in the data. Even when models are constructed specif-

ically to account for known empirical regularities, they are likely to pro-

duce new propositions that have not previously been tested. These new

theory,� �calibrating� the model using parameter values derived from historical data, generating
simulated realizations of the equilibrium processes, determining the sampling distributions of the
statistics computed from the simulated data, and comparing these statistics to those computed for
data from actual economies. Kydland and Prescott's (1982) �computational experiments� are often
referred to as �calibration� because of the use of parameter values derived from simple measures
(such as averages) of historical time series to �calibrate� the theoretical models.

21See Von Neumann and Morgenstern (1944), Black (1948), Arrow (1951) and Downs (1957) for
the start of formal approaches to the study of politics by non-political scientists.

22A parallel development, in the early 1960s, was the creation of the Public Choice So-
ciety (See http://www.pubchoicesoc.org/about_pc.php). This society's statement of purpose
(http://www.pubchoicesoc.org/about_pubchoice.php) is to:

...facilitate the exchange of work, and ideas, at the intersection between economics,
political science, and sociology. It started when scholars from all three of these groups
became interested in the application of essentially economic methods to problems
normally dealt with by political theorists. It has retained strong traces of economic
methodology, but new and fruitful techniques have been developed that are not clearly
identi�ed with any self-contained discipline.
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propositions, of course, create demand tests of the theory. Historical and

statistical analyses tend not to hold the relations among variables con-

stant from study to study and so are less likely to test inductively derived

hypotheses against independent sources of evidence (Amadae and Bueno

de Mesquita 1999: 289).23

The advent of positive political theory (and later game theory) provided another

social science discipline � political science � the basis for a graduate training and

research regimen that continues to grow to this day.

1.2.4 The Political Methodology Society24

In the early 1970s, political scientists began a process of enhancing the usage of

applied statistical procedures. John Sullivan, George Marcus, and Gerald Dorfman

created the journal Political Methodology (Lewis-Beck 2008). The journal was an-

nounced in 1972 and by 1974 the �rst issue was published. This journal was followed

by the creation of the Political Methodology Society in the early 1980s. Like the

Econometric Society, the Political Methodology Society developed annual meetings

and a journal � Political Analysis � which succeeded the earlier Political Method-

ology.

The methodological improvements in political science have accelerated since the

early 1970s and 1980s. Brady and Bartels (1993) note political science has now

started a series of rigorous literatures in topics ranging from parameter variation and

non-random measurement error to dimensional models. A summary of the increasing

breadth of this society can be found in Box-Ste�ensmeier, Brady, and Collier (2008).

1.3 Summary

The chapter brie�y describes ideas and institutions that provide both the direction

and a basis for EITM. These predecessors, while they have some similarities, also have

distinct identities ranging from data analysis, multidisciplinarity, applied statistical

analysis, formal analysis, and the linkage of the latter two. EITM builds on this

foundation and in addressing the scienti�c ideas � order, cause, and chance �

brings �deduction and induction, hypothesis generation and hypothesis testing close

together� (Aldrich, Alt, and Lupia 2008: 840).

23See Amadae and Bueno de Mesquita (1999) for a list of publications associated, in part, with
the Rochester School.

24We thank Christopher Achen and Elinor Ostrom for the background information.



Chapter 2

Contemporary Methodological

Practices

While there has been recent improvement in quantitative social science, there is also

cause for concern that social scientists are not absorbing the scienti�c lessons and

emphasis of prior social scientists. The fear is these past contributions have been

marginalized and the situation today is one in which so-called technical work is only

loosely connected to the fundamental scienti�c ideas.

In more technical language, the creation of methodologies that isolated struc-

tural parameters � to identify these parameters � became secondary to the use

of hand-me-down applied statistical techniques that end up manipulating standard

errors and their associated t-statistics. The reliance on statistically signi�cant results

means virtually nothing when the researcher makes very little attempt to identify

the precise origin of the parameters in question. Absent this identi�cation e�ort, it

is not evident where the model is wrong. The dialogue between theory (model) and

test is weakened.

We have now reached the point where some contemporary methodological prac-

tices contribute to noncumulation. Borrowing and applying statistical tools did seem

to improve upon the use of older techniques. But, as this process of replacing old

with new techniques took place, the search for causal mechanisms was largely ig-

nored. These practices have not gone unnoticed. Achen (2002) has argued that:

Dozens of estimators might be used in any of our empirical applications.

Too often, applied researchers choose the standard ones because they

believe methodologists approve of them, whereas methodologists prefer

some new, complicated untested alternative because they know that the

28
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standard estimators are often ungrounded in substantive theory, and they

hope that the new one might stumble onto something better. Few re-

searchers in either group make a convincing case that their estimator is

humming rather than clanking on their dataset. Even the creators of esti-

mators usually do not prove that the supporting assumptions would make

rational sense or common sense for the political actors being studied. Nor

do they carry out the patient data analysis required to show that their es-

timator, an arbitrary selection from among dozens that might have been

proposed, is more than just computable and plausible, but that its as-

sumptions really match up in detail to the data for which it is intended.

If the thing might work on some planet, we think our job is done (page

436).

2.1 Non-Cumulative Research Practices

Three common practices � data mining, overparameterization, and the use of statis-

tical weighting and patching (e.g., �Omega Matrices�)) � impair scienti�c cumulation

(Granato, Lo, and Wong 2010a; Granato and Scioli 2004). To demonstrate the con-

sequences of separating theory and test consider how these practices a�ect a widely

used test indicator, the t-statistic � which is de�ned as the ratio of an estimated

coe�cient (b) to its standard error (s.e.(b)), that is, b
s.e.(b)

. In the case of a t-statistic,

this means linking the formal model to the test and focusing on the identi�cation of

the parameter b.

Below a brief description is presented of these three common practices whether

they bear any relation to identifying b and by extension falsi�ability, predictive pre-

cision, and understanding the inner workings of a system:

Data Mining. Data mining involves putting data into a standard statistical pack-

age with minimal theory. Regressions (likelihoods) are then estimated until either

statistically signi�cant coe�cients or coe�cients the researcher uses in their �theory�

are found. This step-wise search is not random and has little relation to identifying

causal mechanisms (See Lovell 1983; Denton 1985).

An example of the consequences of date mining is found in Friedman and Schwartz

(1991).1 The case Friedman describes occurred while he was working for the Columbia

1This example was originally drawn from Granato and Scioli (2004: 317-318).
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University's Statistical Research Group during World War II. Friedman �was to serve

as a statistical consultant to a number of projects to develop an improved alloy for

use in airplane turbo-chargers and as a lining for jet engines� (page 48). Friedman's

task was to determine the amount of time it took for a blade made of an alloy to

fracture.

Friedman relied on data from a variety of lab experiments to assist him in ad-

dressing this problem. He then used the data to estimate a single equation linear

regression. Standard statistical indicators suggested his approach was valid. The

analysis predicted that the blade would rupture in �several hundred hours.� However,

the results of actual laboratory tests indicated that a rupture occurred in �something

like 1-4 hours� (page 49). Because of the lab results � and not the linear regression

or the data mining � the alloy was discarded. Since Friedman relied primarily on

data mining he could not know the various stresses or conditions in which ruptures

would occur. He concluded:

Ever since, I have been extremely skeptical of relying on projections from

a multiple regression, however well it performs on the body of data from

which it is derived; and the more complex the regression, the more skep-

tical I am. In the course of decades, that skepticism has been justi�ed

time and again. In my view, regression analysis is a good tool for deriving

hypotheses. But any hypothesis must be treated with data or nonquanti-

tative evidence other than that used in deriving the regression or available

when the regression is derived. Low standard errors of estimate, high t

values, and the like are often tributes to the ingenuity and tenacity of the

statistician rather than reliable evidence of the ability of the regression

to predict data not used in constructing it (page 49).

Overparameterization. This practice, related to data mining, involves a researcher

including, absent any systematic speci�cation search, a plethora of independent vari-

ables into a statistical package and obtains signi�cant t-statistics. E�orts to identify

an underlying causal mechanism are also ine�ectual.2 As Achen (2005) notes:

...big, mushy linear regression and probit equations seem to need a great

many control variables precisely because they are jamming together all

2In the absence of formal models, purely applied statistical procedures relying on systematic
rules in a speci�cation search can be cumulative. See Clarke et al. (2004: 79-129) for an exam-
ple of building composite empirical models. Composite models can be crucial in the process of
methodological uni�cation.
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sorts of observations that do not belong together. Countries, wars, racial

categories, religious preferences, education levels, and other variables that

change people's coe�cients are �controlled� with dummy variables that

are completely inadequate to modeling their e�ects. The result is a long

list of independent variables, a jumbled bag of nearly unrelated obser-

vations, and often a hopelessly bad speci�cation with meaningless (but

statistically signi�cant with several asterisks!) results (page 227).3

Omega Matrices. Data mining and overparameterized approaches are virtually

guaranteed to break down statistically. The question is what to do when these failures

occur (e.g., Friedman and Schwartz 1991). There are elaborate ways of using (error)

weighting techniques to correct model misspeci�cations or to use other statistical

patches that in�uence s.e.(b). Many intermediate econometric textbooks contain

chapters containing the Greek symbol: Omega (Ω) (e.g., Johnston and DiNardo

1997: 162-164). This symbol is representative of the procedure whereby a researcher

weights the arrayed (in matrix form) data so that the statistical errors, ultimately

the standard error noted above, is altered and the t-statistic is manipulated.

By way of example (using ordinary least squares (OLS)), consider the following

model in scalar form (we drop the constant for simplicity):

yt = βxt + ηt,

and assume there is �rst-order serial correlation:

ηt = ρηt−1 + νt,

where νt is a white noise process. With this estimate of ρ a researcher �removes� the

serial correlation:

yt − ρyt−1 = β (xt − ρxt−1) + νt.

Alternatively, in matrix form, we express this transformation as:

βGLS =
(
X ′Ω−1X

)
X ′Ω−1Y,

3Gabaix and Laibson (2008) labels this practice over�tting which �occurs when a model works
very well in a given situation but fails to make accurate out-of-sample predictions� (page 293).
When the �researcher can combine the myriad elements to match almost any given set of facts...[it
becomes] easy to explain in-sample data, producing the false impression that the model will have
real (out-of-sample) explanatory power� (page 294).
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as opposed to the OLS estimator:

βOLS = (X ′X)
−1
X ′Y.

The di�erence is the Ω matrix which is represented as:

Ω =


1 ρ ρ2 ...

ρ 1 ... ...

ρ2 ... 1 ...

... ... ... 1


and taking the inverse with the �ρ� correction:

Ω−1 =


1 −ρ ... ...

−ρ 1 + ρ2 ... ...

... ... 1 + ρ2 ...

... ... ... ...

 1

1− ρ2
.

In principle, there is nothing wrong with knowing the Omega matrix for a par-

ticular statistical model. The standard error(s) produced by an Omega matrix can

serve as a check on whether inferences have been confounded to such an extent that

a Type I or Type II error has been committed. Far too often, however, researchers

treat the Omega weights (or alternative statistical patches) as the result of a true

model. Given that the parameter of �ρ� is based on estimating the error of the re-

gression, researchers that decide to use this weight are taking the mistakes of their

model to ��x� their standard errors. It is akin to painting over a crack on a bridge

(Hendry 1995). This activity hampers scienti�c progress because it uses a model's

mistakes to obscure �aws.4

Similarly, when using a ρ-restriction, researchers are imposing a restriction on

variables in the estimation system. For time series data, researchers assume all

variables in the system have the same level of persistence. Matters are worse when

data are time series and cross section. The restriction becomes even more severe

as researchers assume all the cases and all the independent variables have the same

level of persistence.

A �nal scienti�c problem with ρ-restrictions is that they fundamentally alter the

original model so there is no longer any relation between the theory and the test.

4See Leamer (2010) for a more recent critique.
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Figure 2.1.1: Noncumulative Practices

A theory assuming, for example, a certain level of persistence (i.e., regularity) in

behavior (e.g., party identi�cation) is altered by tools used to ��lter out� persistence

(Mizon 1995).

2.1.1 Assessment

To summarize, these current practices can also be evaluated in relation to how they

fail to contribute to a modeling dialogue between theory and test. What we see in

Figure 2.1.1 is that the process of theoretical development (understanding the work-

ings of the system), prediction, and validation are never directly applied. Instead,

the empirical test(s) remains in a loop or dialogue with itself. An iterative pro-

cess of data mining, overparameterization, and the use of statistical patches (Omega

matrices) replaces prediction, validation (falsi�cation), and an understanding of the

process.5 This consequence inevitably follows because current practice does not at-

tempt to identify model parameters (b's) with the more general e�ect to impair

scienti�c progress.6

One lesson from this admittedly simpli�ed depiction in Figure 2.1.1 is applied

statistical practices, when used in isolation, lack power since they are not linked to

5Note when we use the word validation this is not simply a process of a single theory being
tested by the accuracy of its predictions but also in comparison to competing theories on the same
phenomena. As Kuhn (1979) states:

Anomalous observations...cannot tempt [a scientist] to abandon his theory until an-
other one is suggested to replace it...In scienti�c practice the real con�rmation ques-
tions always involve the comparison of two theories with each other and with the
world, not the comparison of a single theory with the world (page 211).

6While this example uses linear procedures, non-linear procedures are subject to many of the
same weaknesses. Achen (2002), for example, raises questions about the forms of statistical patching
in various likelihood procedures and how these practices obscure identi�cation.
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a formal model.7 Of course, formal models are simpli�cations of what is studied.

Nevertheless, they systematically sort rival arguments and confounding factors. If

formalized predictions, and the underlying system interactions, are inconsistent with

empirical tests, then the theory � as represented in the formal model � needs

adjustment and the dialogue is maintained.8

Even scholars who are sensitive to establishing robustness in their applied sta-

tistical results �nd the tools available are inadequate when used without a formal

counterpart. For example, augmenting applied statistical tests with Extreme Bounds

Analysis (EBA) (Leamer 1983) provides a check on parameter stability, but the test

is ex-post and does not allow for ex-ante prediction.

This should come as no surprise when one considers the e�ects of previously

unspeci�ed covariates in this procedure. Each time an applied statistical model is

respeci�ed the entire model is subject to change. All predictions are fragile in that

sense, but without a priori use of equilibrium conditions (e.g., stability conditions) in

a formal model, the parameter changes in a procedure such as EBA are of unknown

origin.9

2.2 Noncumulative Practices: An Example of What

Can Go Wrong

The problem with noncumulative practice is demonstrated in the following macro

political economy illustration. We employ a structural model to show a relation

between parameters and predictions.10 This is contrary to current practice which

7This criticism extends to progressive applied statistical research strategies (See Hendry 1995).
Despite their rigor, speci�cation searches relying on diagnostics, goodness-of-�t metrics, and com-
parisons to rival models fail to account for ex-ante changes in parameters that a formal model
can provide. These applied statistical approaches succeed in improving in-sample accuracy, but
lack power out-of-sample particularly where behavioral responses to policy interventions or various
shocks occur. Ultimately, the most powerful tests of formal models reside in predictions for other
cases and over earlier or future periods.

8Experiments serve as empirical tests too. See Ostrom (2010: 71) for a discussion on how em-
pirical results in experiments contributed to the development of an alternative preference function.

9Zellner (1984: 9-10) provides other robustness tests, some of which involve the linkage of
formal and empirical analysis. These tests include: a) Studying incorrect predictions; b) Studying
implications of various equations (alter them); c) Simulating a model's properties; d) Pushing
theories to their extreme; e) Observing unusual historical periods; f) Cross level inference; and g)
Experiments.

10Classic work in macro political economy by political scientists does not generally rely on struc-
tural models (e.g., Hibbs 1977), but see Chappell and Keech (1983), Alesina and Rosenthal (1995),
and Freeman and Houser (1998) as exceptions. For a more general overview of macro political
economy see Drazen (2000) and Persson and Tabellini (2000).
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typically ignores structural equation systems (and reduced forms), let alone identi-

�cation conditions. Then, via simulation, we show how the weaknesses of current

practices leads to serious scienti�c consequences such as incorrect inference and mis-

leading policy advice.

Now consider the relation between a particular macroeconomic policy and out-

come: countercyclical monetary policy and in�ation. To keep things simple we have

left out various political and social in�uences on the policy rule. While this research

area holds great potential for explaining why policymakers behave certain ways, it

does not a�ect the methodological point.11

The model incorporates a lagged expectations augmented Phillips curve, an IS

curve (aggregate demand), and an interest rate policy rule (Taylor 1993). Each of

these structural equations is a behavioral relation and can be derived from microfoun-

dations.12 In this example, however, we will also abstract out the microfoundations

since they are not central to the demonstration.

The model contains the following structure:

yt = ynt + γ (πt − Et−1πt) + u1t, γ > 0, (2.2.1)

yt = λ1 + λ2 (it − Etπt+1) + λ3Etyt+1 + u2t, λ1 > 0, λ2 < 0, λ3 > 0, (2.2.2)

it = πt + αy(yt − ynt ) + απ (πt − π∗t ) + r∗t , (2.2.3)

where yt is the log of output, ynt is the natural rate of output which follows a linear

trend: α + βt, and πt is price in�ation. Et is an conditional expectations operator

such that Et−1πt is expected in�ation for period t given the information available

up to period t − 1, Etπt+1 is expected in�ation one period ahead, and Etyt+1 is

expected output one period ahead.13 The variable it is a nominal interest rate that

the policymaker can in�uence, π∗t is the in�ation target, r∗t is the real interest rate,

u1t is an iid shock (demand shock), and u2t is an iid shock (supply shock).

At issue is the relation between policy and in�ation. The model posits aggregate

supply and demand depend on the expectations over the course of policy and this

policy follows some stable probability. Furthermore, agents understand the policy

rule and augment their behavior to include the expected gains or losses implied by

the policy rule and policymaker behavior (Lucas 1976).

11See Chappell and Keech (1983) for an application of a structural model that incorporates the
length of a presidential term.

12See Achen and Shively (1995: 23-25) for an example on the importance of linking individual
and aggregate levels of analysis.

13See Sargent (1979) for the detailed discussion on the rational expectations operator.



CHAPTER 2. CONTEMPORARY METHODOLOGICAL PRACTICES 36

The coe�cients αy and απ represent the aggressiveness policymakers possess in

stopping in�ationary pressures. Positive values of αy and απ indicate an aggressive

in�ation-stabilizing policy tack. These positive parameter values re�ect policymaker

willingness to raise nominal interest rates in response to excess demand (in�ation),

whether it is when output is above its natural rate (yt > ynt ), or when in�ation

exceeds its prespeci�ed target (πt > π∗t ). The coe�cients typically range between

[0, 2] (Clarida, Gali, and Gertler 2000).14

With the relation between countercyclical monetary policy and in�ation stated,

we now solve for in�ation using the method of undetermined coe�cients. The mini-

mum state variable solution (MSV) is:15

πt =

(
J0

1− J1 − J2

+
J2J3β

(1− J1 − J2)2

)
+

(
J3

1− J1 − J2

)
ynt +Xt,

where:

J0 = (λ1 − λ2αππ
∗
t + λ2r

∗
t + λ3β) Θ−1,

J1 = (γ − λ2αyγ) Θ−1,

J2 = λ2Θ−1,

J3 = (λ3 − 1) Θ−1,

Xt = [(λ2αy − 1)u1t + u2t] Θ−1,

and Θ = γ (1− λ2αy)− λ2(1 + απ).

In more compact form the solution is:

πt = Ξ + Ψynt +Xt, (2.2.4)

where:

Ξ =
J0

1− J1 − J2

+
J2J3β

(1− J1 − J2)2 ,

Ψ =
J3

1− J1 − J2

.

14Clarida, Gali, and Gertler (2000) refer to (2.2.3) as a �backward looking� rule. They estimate
αy, απ in (2.2.3) for the United States (1960:1-1996:4). They �nd αy ranges between 0.0 to 0.39
and απ ranges between 0.86 to 2.55. They conclude the United States monetary authority moved
to nearly an exclusive focus on stabilizing in�ation.

15The MSV solution is the simplest parameterization one can choose using the method of unde-
termined coe�cients (See McCallum 1983). We discuss these tools in Chapters 5 and 6.
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Equation (2.2.4) relates parameters (αy, απ) with πt. The problem, however, is �

absent added information � it is impossible to explicitly relate policy and treatment

changes to outcomes.

There are important scienti�c consequences when we fail to link formal and ap-

plied statistical analysis for purposes of deriving structural parameters.16 First,

consider the utility of a reduced form � which is usually not derived in the current

methodological environment. A reduced form such as (2.2.4) possesses weaknesses

when it comes to making inferences. The reduced form parameters (Ji′s,Ξ,Ψ) can-

not strictly identify the parameters relating cause and e�ect (i.e., αy, απ). Where

reduced forms have power is not in making inferences but in making predictions:

reduced form estimates provide some assistance in ex-ante forecasts.

How useful then are reduced forms in making predictions based on speci�c values

of the independent variables � the so-called conditional forecast? With a reduced

form a researcher cannot make conditional forecasts. The reason is the system (de-

scribed in equations (2.2.1) - (2.2.3)) depends on the behavior of the agents and

whether responses from agents are invariant. If agents' behavior is not invariant,

the parameters (in equations (2.2.1) - (2.2.3)) are not invariant. Without a mecha-

nism detailing how structural parameters (and behavior) remain (in)variant as inde-

pendent variables change, an applied statistical model fails in assessing alternative

independent variable shifts.

While reduced forms lack inferential power necessary to make conditional fore-

casts, it still has a linkage to theoretical foundations. Things can be far worse,

however, if we use a single empirical equation similar to equation (2.2.4), with no

formal-theoretical linkage, and rely on current applied statistical practices � data

mining, garbage cans, and �omega matrices.� These applied statistical practices lack

overall robustness as they obscure fundamental speci�cation error. The parameter(s)

�identi�ed� by these current practices lack any real meaning or use.

To see the �aws associated with these contemporary practices more straightfor-

16Heckman (2000) de�nes structural causal e�ects as �the direct e�ects of the variables in the
behavioral equations� Furthermore, �When these equations are linear, the coe�cients on the causal
variables are called structural parameters (emphasis added), and they fully characterize the struc-
tural e�ects.� (page 59). Heckman also notes there is some disagreement about what constitutes a
structural parameter. The disagreement centers on whether one uses a linear model, a non-linear
model or, more, recently a fully parameterized model. In the latter case, structural parameters,
can also be called �deep� to distinguish between �the derivatives of a behavioral relationship used
to de�ne causal e�ects and the parameters that generate the behavioral relationship� (page 60).
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wardly consider equation (2.2.5) as a single equation estimate of πt:

πt = d0 + d1y
n
t + v1t, (2.2.5)

where v1t is the error term. If we contrast the similarly situated parameters in

equations (2.2.4) with (2.2.5), note that d0 would serve the purpose of Ξ and d1

serves the purpose of Ψ. But, already equation (2.2.5) fails to make any structural

statement about the relation between the policy rule in (2.2.3) and in�ation in (2.2.5).

There is no explicit relation between d0 or d1 with αy or απ.

Now, assume the researcher chooses to ignore any process of methodological uni-

�cation. Instead the analyst tries to estimate a shift in policy regime and reestimates

(2.2.5) with new variables. A typical way is to add dummy variables signifying policy

shifts due to factors such as partisanship and other factors (e.g., Hibbs 1977). We

keep the empirical model small and rewrite (2.2.5) with just one added variable, a

policy shift dummy variable (SHIFTt) signifying a change in the intercept or the

level of in�ation:

πt = d̃0 + d̃1y
n
t + d̃2SHIFTt + v2t, (2.2.6)

where v2t is the error term.

Does this really assist in achieving identi�cation, predictive precision, falsi�cation,

and understanding the working of the system? Notice that the parameter d̃2 in (2.2.6)

does not actually re�ect actual policy shifts relating policy parameters to in�ation

(one such as equation (2.2.3)). This shortcoming is severe. It means we do not know

what parameters in the system can lead to counterintuitive results and, ultimately,

incorrect policy or treatment recommendations.

Consider the following simulation of the system expressed in (2.2.1) , (2.2.2) , and

(2.2.3). In this simulation the structural explanation, relating parameters in the sys-

tem, shows that aggregate demand, as represented by equation (2.2.2), must respond

in a certain way to changes in real interest rates and the expected output level. The

relation is represented by the parameter λ3 in equation (2.2.2). What happens to

the relation between in�ation-stabilizing policy and in�ation if λ3 is not invariant

and contains alternative responses?

In Figure 2.2.1, Panels A, B, and C report the results in a simulation of the

system.17 Changes in in�ation are represented in each panel, given changes to λ3.

17The simulation parameter values are the following for the AS, IS, and policy rule:
AS: α = 5.0;β = 0.05; yn0 = 1.0; γ = 10;σu1 = 1.0.
IS: λ1 = 3.0;λ2 = −1.0;λ3 = (0.5, 1.0, 1.5);π∗ = 2.0;σu2

= 1.0.
Policy rule: αy = 0.5;απ = 0.5; r∗ = 3.0.
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Figure 2.2.1: Simulation Results

In Panel A, when λ3 > 1, an aggressive policy (αy, απ = 0.5 > 0) does not reduce

in�ation. On the other hand, in panel Panel B, when 0 < λ3 < 1, in�ation falls. It is

only in the third case, when λ3 = 1, we �nd that an aggressive policy keeps in�ation

roughly around a 2 percent target (See Panel C).

The implication of these simulations has direct signi�cance for both reduced form

estimation and current practice � with the consequences being especially direct for

current practice. If a researcher were to estimate the reduced form of in�ation as

represented in (2.2.4) they would �nd instability in the forecast and forecast error.

However, the researched would have di�culty �nding the source of the instability

given the lack of information in identifying the relation(s) between the parameters

in (2.2.2) and the remaining parameters (variables) in the model.

Yet, this is superior to what occurs using current practices. Speci�cally, depend-

ing on the value of λ3, there are alternative outcomes that would not be illuminated

using (2.2.6) and the practices associated with that equation. But, now assume we

estimate (2.2.6) and �nd a signi�cant value for d2 indicating that when policy shifts

in an aggressive manner, the level of in�ation falls. Does this mean that aggressive

policy reduces in�ation? Using this research practice we do not have an answer. Ab-

sent an explicitly posited relation, all we can say is that some parameter, that may

or may not relate the independent variable to the dependent variable, is signi�cant.

What is more important is that a formal model would show the substantive
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�ndings are not generalizable when alternative and relevant exogenous conditions

are considered. Indeed, the indeterminacy result shown in Figure 2.2.1 is not robust

to the inclusion of nominal variables to the interest rate rule.18 But, we would

not know what we do not know under current practices which give us estimates of

equations (2.2.5) and (2.2.6).

The larger lesson from this exercise is to demonstrate how current practice fails

to emphasize both the connection between the valid understanding of a system and

predictive power.

2.3 Summary

Some contemporary methodology practices have become acts of preemptive scienti�c

surrender. These practices fail to provide the necessary steps in attaining valid in-

ference and prediction. Embedded in data mining, overparameterization, and omega

matrices is the general view a researcher will:

Gather the data, run the regression/MLE with the usual linear list of

control variables, report the signi�cance tests, and announce that one's

pet variable �passed.� This dreary hypothesis-testing framework is some-

times seized upon by beginners. Being purely mechanical, it saves a great

deal of thinking and anxiety, and cannot help being popular. But obvi-

ously, it has to go. Our best empirical generalizations do not derive from

that kind of work. (Achen 2002: 442-443).

This scienti�c weakness is all the more clear when we consider the challenge a social

scientist faces. If we simply specify that variable Y is a function of variable X,

the statistical �tests� estimating a correlation between X and Y cannot determine

causation between the two even when their correlation is statistically signi�cant.

Without unifying formal and empirical analysis we lack a basic analytical attribute

suitable for identifying the following possibilities de�ning the relation between X and

Y . But, recall that a signi�cant statistical result between X and Y can be due to:

a) X causing Y directly;

b) X causing an unknown variable, Z, which causes Y ; and

c)X and Y are caused by an unknown common factorW , but there is no causality

between X and Y .

18Alternatively, McCallum and Nelson (1999) demonstrate that when output is not modeled as
a constant, an IS curve of the form (2.2.2) can produce indeterminacies.
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Too often researchers, using the methods described above predetermine the sig-

ni�cant correlation is result �a.�19 While EITM does not guarantee a model is correct,

it does promote a dialogue between theory and test so that �a� is not the default

choice.

19See Hoover (2001a,b) for a review of these issues and speci�c methodologies.



Chapter 3

The EITM Framework

The scienti�c consequences of the current methodological status quo are far reach-

ing. A signi�cant scienti�c problem with decoupling formal analysis from applied

statistical procedures centers on a failure to identify invariant parameter estimates.

This, in turn, impairs falsi�cation of theories and hypotheses as well as the com-

parison of rival theories and hypotheses. Predictive precision is also a�ected since

predicting how the behavioral response of an agent in�uences the success or failure

of a policy or treatment is impossible.1 Developing a basic understanding of how a

system operates is a distant hope as well.

We have been arguing that linking mutually reinforcing properties of formal and

empirical analysis provides the necessary transparency between theory and test to

aid in valid hypothesis testing. This linkage also contributes to the identi�cation of

invariant parameter estimates suitable for improving the accuracy of both ex-post

and ex-ante predictions and directly addresses the ideas of order, cause, and chance.2

3.1 Early Methodological Uni�cation: The Solow

Model

Methodological approaches to unify formal and empirical analysis are not new. Prior

incarnations include research by scholars from organizations such as the Cowles Com-

1We will use the word inference to refer to a parameter in a regression or likelihood (b). We
use the word prediction to refer to a model's forecast of a dependent variable (ŷ). For a technical
treatment of these two concepts see Engle, Hendry, and Richard (1983).

2There is a large literature devoted to identi�cation problems (See, for example, Fisher 1966;
Manski 1995). Some researchers treat the issue of simultaneity and identi�cation as one and the
same. We consider identi�cation in a broader sense that includes simultaneity, but not limited to
simultaneity.
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mission presented earlier. Recall the Cowles Commission established conditions in

which structural parameters are identi�ed within a model. It explored the di�erences

between structural and reduced-form parameters. Along with the work on structural

parameters, Cowles Commission members also gave formal and empirical speci�city

to issues such as exogeneity and policy invariance (Aldrich 1989; Morgan 1990; Christ

1994; Heckman 2000).

We demonstrate the process of scienti�c cumulation using the well-known Solow

(1956) model of economic development. This example shows how the traditional

approach to methodological uni�cation (similar to the Cowles Commission) provides

a basis for a modeling dialogue and scienti�c cumulation. In his seminal paper,

Solow (1956) argues capital accumulation and exogenous technological progress are

fundamental mechanisms in economic development.

Using a simple Cobb-Douglas production with a dynamic process of capital ac-

cumulation, Solow concludes that a country experiences a higher transitory growth

rate when the country increases its national saving to stimulate capital accumulation.

The formal model has the following structure:

Yt = BtK
α
t L

1−α
t , 0 < α < 1 (3.1.1)

St = sYt, 0 < s < 1 (3.1.2)

Kt+1 −Kt = St − δKt, (3.1.3)

Lt+1 = (1 + n)Lt, (3.1.4)

At+1 = (1 + g)At, (3.1.5)

where aggregate production in year t, Yt, is determined by capital, Kt, labor, Lt, and

technological progress, Bt ≡ A1−α
t (Cobb-Douglas speci�cation). St is gross domestic

savings in year t and the savings rate, s, is a constant proportion of total production.

Equation (3.1.3) represents the capital accumulation, Kt+1 − Kt, which equals the

domestic savings minus capital depreciation, δKt (where δ is the depreciation rate).

Equations (3.1.4) and (3.1.5) show that both labor and technological progress are

exogenously increasing at the rates of n and g, respectively.

One important prediction from the Solow model is the conditional convergence

hypothesis which states that countries with lower initial levels of capital and output

tend to grow faster when the countries' characteristics are held constant. Using

equation (3.1.3) , we solve for the transitory growth rate of capital per e�ective unit
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of labor
(
k̃t ≡ Kt

AtLt

)
:

k̃t+1 − k̃t
k̃t

=
1

(1 + n) (1 + g)

(
sk̃α−1

t − (n+ g + δ + ng)
)
. (3.1.6)

In the steady state, the level of capital (per e�ective unit of labor) is constant over

time. It implies that its growth rate is zero. We solve for the steady state level:

k̃∗ =

(
s

n+ g + δ + ng

)1/(1−α)

Equation (3.1.6) shows that if k̃t is further away from the steady state level k̃∗,

then k̃t approaches k̃
∗ at a faster rate.3 Therefore, the growth rate of output per

e�ective unit of labor is:

ln ỹt − ln ỹt−1 = α
(

ln k̃t − ln k̃t−1

)
,

where ln k̃t− ln k̃t−1 is approximately
k̃t+1−k̃t

k̃t
in equation (3.1.6) . Using the technique

of linear approximation, we can derive the average growth rate of the output level

as:

ln yT − ln y0

T
≈ g+

1− (1− λ)T

T

(
lnA0 +

α

1− α
(ln s− ln (n+ g + δ + ng))− ln y0

)
,

(3.1.7)

where yt ≡ Yt
Lt

= Atỹt and
(ln yT−ln y0)

T
represents the average (annual) growth rate

between period t = 0 and t = T . A0 and y0 are the respective technological level and

output levels in the initial period, t = 0. Equation (3.1.7) shows the level of initial

output level y0 is negatively associated with the growth rate of output: a country

tends to grow faster if the output level in the country is lower initially.

Extant empirical studies typically regress the average of the annual growth rate

(for many countries) on the initial level of real GDP and other related control vari-

ables suggested in the model, such as the national savings (or investment) rate and

the population growth rate for country i :

giT,0 = β0 − β1 ln yi0 + β2Z
i, (3.1.8)

where Zi ≡ ln si − ln (ni + gi + δi + nigi) , and giT,0 ≡
(ln yiT−ln yi0)

T
. From equation

3This follows if we de�ne yt ≡ Yt

AtLt
and rewrite equation (3.1.1) as ỹt = k̃αt .
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(3.1.7) the parameters β0, β1 and β2 correspond to: g + 1−(1−λ)T

T
lnA0, −1−(1−λ)T

T
,

and α
1−α

(
1−(1−λ)T

T

)
, respectively.

Using equation (3.1.8) , a common empirical �nding is that the initial level of

GDP possesses a signi�cant negative correlation with the economic growth rate in

a country. This �nding supports the conditional convergence hypothesis that the

country with a lower level of real GDP tends to grow faster (Barro and Sala-i-Martin

1992; Mankiw, Romer, and Weil 1992).

3.1.1 Leveraging The Solow Model

What role, then, does the Solow model play in cumulation? The typical estimated

coe�cient of initial real GDP is signi�cantly less than the Solow model prediction.

In other words, the Solow model overestimates the speed of convergence. Despite the

fact that the Solow model was wrong in this particular case, it had uni�ed formal

and empirical analysis and, therefore, provided a foundation upon which to build.

One path taken was to relax the assumption that output production depended on

homogeneous labor and capital. Mankiw, Romer and Weil (1992) modi�ed the Solow

model by introducing the stock of human capital in the production function. Human

capital stock is represented as the sum of education and training that the workers

receive. By controlling for the level of human capital (education), the authors �nd

the rate of convergence is approximately two percent per year which is closer to the

prediction in the modi�ed Solow model.

The Solow model and the extensions of it provide an example of a cumulative re-

search process. The modi�cations in the theoretical model were due to the empirical

tests, but this is feasible due to methodological uni�cation. The modeling dialogue

here gives the researchers a better understanding of the regularities in economic de-

velopment. If researchers did not consider the Solow model and solely applied an

empirical procedure by regressing the average growth rate on the initial real GDP,

they could misinterpret the empirical results and fail to understand the mechanism(s)

that in�uence economic development. On the other hand, if the researchers only set

up a theoretical model but do not test it empirically, they would not know that the

model is actually inconsistent with the empirical observations.
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3.2 The EITM Framework4

This EITM framework builds on the Cowles Commission approach and then places

an emphasis on developing behavioral and applied statistical analogues and linking

these analogues.5 And while we build on the Cowles Commission approach, there do

exist analytical frameworks in other disciplines as well.6

EITM includes the following attributes:7

• EITM places emphasis on modeling human behavior so new uncertainty created

by shifts in behavioral traits such as public tastes, attitudes, expectations, and

learning are properly accounted for and studied.

• The Cowles Commission is associated with building a system of equations and

then following rules (rank and order conditions) for identi�cation that count

equations and unknowns. In contrast, our EITM framework is agnostic on the

choice to build and relate a system or to partition the system (via assumption)

into a smaller set of equations, even a single equation.8 We place emphasis on

the mutually reinforcing properties of formal and empirical analysis.

• A �nal and related point on model speci�cation relates to the critiques of the

structural approach leveled by Sims (1980). It is well known that structural

parameters are not identi�ed from reduced form estimates. The practice of

�nding ways to identify models can lead to �incredible� theoretical speci�ca-

tions (Sims 1980; Freeman, Lin, and Williams 1989). The proposed EITM

framework, by adding behavioral concepts and analogues, can address Sims'

criticisms in a theoretically meaningful way. Analogues, in particular, have

important scienti�c importance since they hold the promise of operationalizing

mechanisms.9

4We thank Douglas Dion for his insights and suggestions.
5Analogues are related to operationalizing a concept. An analogue is a device represented by

variable � and measurable � quantities. Analogues include variables, operators, or an estimation
process that mimic the concept of interest. They serve as analytical devices � not categorical indi-
cators � for behavior and, therefore, provide for changes in behavior as well as a more transparent
interpretation of the formal and applied statistical model.

6Jasso's (2004) Tripartite Framework will be reviewed in Chapter 12.
7See Granato, Lo, and Wong (2010a, 2010b, 2011).
8This debate about general and partial equilibrium model building can be traced back to at least

the 1800s. See Friedman (1953) for descriptions and evaluation of �Walrasian� and �Marshallian�
model building practice.

9Operationalizing causal mechanisms, as opposed to operationalizing variables, involves the cre-
ation of measurable devices (i.e., analogues) on both the formal side and the empirical side. An
early example of operationalizing a mechanism can be seen in the work of Converse (1969). He
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This EITM framework contains three steps:

Step 1. Relate and Unify Theoretical Concepts and Applied Statistical

Concepts

The goal of this �rst step in EITM is to transform the focus from the substantive topic

to the underlying behavioral process. We start, however, not with the development

of mathematical structures but with the identi�cation of concepts. It is of course

standard to suggest that research start with concepts. We have in mind, however, not

the substantive concepts central to a discipline, but instead to the general behavioral

attributes of the thing being researched.10

Concepts of particular concern in this framework re�ect many overarching social and

behavioral processes. Examples include (but are not limited to):

• decision making

• bargaining

• expectations

• learning

• elements of social interaction (strategic and non-strategic)

It is also important to �nd an appropriate statistical concept to match with the

theoretical concept. Examples of applied statistical concepts include (but are not

limited to):

• persistence

advanced the theory that strength of party identi�cation (and voting behavior) is primarily a func-
tion of intergenerational transmission plus the number of times one had voted in free elections. To
operationalize his proposed mechanism � intergenerational transmission � he made use of the
following analogue: the Markov chain. This particular analogue allowed for a particular dynamic
prediction he tested with data.

10In political science, for example, a student of democracy might focus on choice: how do demo-
graphic and attitudinal variables drive individual selection over political parties. Another student
might focus on uncertainty and learning : given the lack of a �track record� among political parties in
newly democratizing states, how do individuals come to form expectations regarding those parties,
and how do those expectations shift in response to political and economic changes? A third student
might concentrate on the idea of bargaining : how do the various party leaders face the trade-o�s
between maximizing their potential in�uence in the political system and maintaining the promise
to democratize? The idea is not to ignore the substantive aspects, but to look at substance from
a di�erent perspective, one that not only helps clarify the focus of the research but also suggests
common behavioral concerns that make it easier to communicate across sub�elds and �nd common
elements and approaches. We thank Douglas Dion for this set of examples.
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• measurement error

• nominal choice

• simultaneity

• prediction

Step 2. Develop Behavioral (Formal) and Applied Statistical Analogues

To link concepts with tests, we need analogues. An analogue is a device representing

a concept via a continuous and measurable variable or set of variables. Examples of

analogues for the behavioral (formal) concepts such as decision making, expectations,

learning, and strategic interaction include (but are not limited to):

• decision theory (e.g., utility maximization)

• conditional expectations (forecasting) procedures

• adaptive and Bayesian learning (information updating) procedures

• game theory

Examples of applied statistical analogues for the applied statistical concepts of per-

sistence11, measurement error, nominal choice, simultaneity, and prediction include

(respectively):

• autoregressive estimation

• error-in-variables regression

• discrete choice modeling

• multi-stage estimation (e.g., two-stage least squares)

• point estimates and distributions

11Consider, for example, the concept of persistence. Theoretically, this conjures up a host of
potential analogues: coordination equilibria, Markov chain steady-states, locally and globally stable
solutions to systems of di�erential equations, or still lifes in cellular automata models. Similarly,
persistence can be tied to a number of statistical models, including autoregressive estimation and
asymptotic theory.



CHAPTER 3. THE EITM FRAMEWORK 49

Step 3. Unify and Evaluate the Analogues

The third step uni�es the mutually reinforcing properties of the formal and empirical

analogues. By starting with the concept and then moving to the theoretical and

applied statistical analogues, we guarantee that there must be something in common

between the theory and the empirical analysis. The idea, then, is to locate the

parameters of interest in each that re�ect the underlying concept, and then use

those to build clearer and stronger links between the mechanisms of the theoretical

model and the speci�cation of the statistical methods. The speci�ed linkage not only

draws theory and empirics closer, but also provides a way for research to build by

showing potential sources of inaccuracies and model failure.

3.3 Summary

The EITM framework contains three basic steps:

1. Link the theoretical mechanisms and applied statistical concepts.

2. Develop behavioral (formal) and applied statistical analogues. To link concepts

with tests, we need analogues. An analogue can be thought of as a device in

which a concept is represented by continuously variable � and measurable �

quantities. Analogues serve as analytical devices for behavior and, therefore,

provide for changes in behavior as well as a more transparent interpretation of

the formal and applied statistical model.

3. Link and evaluate the behavioral (formal) and applied statistical analogues.

This EITM framework should not be interpreted as a substitute for pure formal or

pure empirical approaches. The criticisms leveled in Chapter 2 stand, but these

approaches are valid out of necessity, particularly when theory or data are either

underdeveloped, nonexistent, or both. The simple fact is there are numerous exam-

ples in many sciences where theory is ahead of data or data are ahead of theory,

sometimes for decades (See Rigden 2005). Nor should the quantitative nature of this

framework suggest it precludes the use of qualitative procedures (Brady and Collier

2010). Such exclusion would be throwing out information which could otherwise aid

in �nding underlying mechanisms.

We demonstrate the various linkages in the second part of this book.
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Chapter 4

Economic Voting

Economic voting comprises a substantial literature. A strand starting with Kramer

(1983) and extending to work by Alesina and Rosenthal (1995), Suzuki and Chappell

(1996), and Lin (1999) contributes to the value of the literature. These studies have

re�ned earlier work and present models of voter sophistication and new applied

statistical tests. In the former instance, voters possess the capability to deal with

uncertainty in assigning blame or credit to incumbents for good or bad economic

conditions. For the latter, applied statistical tests include some of the more advanced

tools in time series analysis.

There is another important � EITM related � feature in this work. Some of

these authors relate a measurement error problem to the voter capability noted above.

This is exactly what EITM and methodological uni�cation accomplish. The theory

� the formal model � implies an applied statistical model with measurement error.

Consequently, one can examine the joint e�ects by employing a uni�ed approach.1

4.1 Step 1: Relating Expectations, Uncertainty, and

Measurement Error

Earlier contributors have dealt with this �signal extraction� problem (See the Ap-

pendix, Section 4.53). Friedman (1957) and Lucas's (1973) substantive �ndings

would not have been achieved had they treated their research question as a pure mea-

surement error problem requiring only an applied statistical analysis (and ��x� for the

1Recall that applied statistical tools lack power in disentangling conceptually distinct e�ects on a
dependent variable. This is noteworthy since the traditional applied statistical view of measurement
error is that it creates parameter bias, with the typical remedy requiring the use of various estimation
techniques (See the Appendix, Section 4.51) and Johnston and DiNardo (1997:153-159)).
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measurement error). Indeed, both Friedman (1957) and Lucas (1973) linked speci�c

empirical coe�cients from their respective formal (behavioral) models: among their

contributions was to merge �error in variables� regression with formal models of ex-

pectations and uncertainty. For Friedman, the expectations and uncertainty involve

permanent-temporary confusion, while general-relative confusion is the behavioral

mechanism in Lucas's model.

4.2 Step 2: Analogues for Expectations, Uncertainty,

and Measurement Error

This chapter focuses on Alesina and Rosenthal's (1995) contribution. The formal

model representing the behavioral concepts � expectations and uncertainty � is

presented. Alesina and Rosenthal (1995) provide the formal model (pages 191-195).

Their model of economic growth is based on an expectations augmented aggregate

supply curve:

ŷt = ŷn + γ (πt − πet ) + εt, (4.2.1)

where ŷt represents the rate of economic growth (GDP growth) in period t, ŷn is

the natural economic growth rate, πt is the in�ation rate at time t, and πet is the

expected in�ation rate at time t formed at time t− 1.

Having established voter in�ation expectations the concept of uncertainty is next.

We assume voters want to determine whether to attribute credit or blame for eco-

nomic growth (yt) outcomes to the incumbent administration. Yet, voters are faced

with uncertainty in determining which part of the economic outcomes is due to in-

cumbent �competence� (i.e., policy acumen) or simply good luck.

If the uncertainty is based, in part, from equation (4.2.1), then equation (4.2.2)

presents the analogue. It is commonly referred to as a �signal extraction� or mea-

surement error problem (See the Appendix, Section 4.53):

εt = ηt + ξt. (4.2.2)

The variable εt represents a �shock� comprised of the two unobservable characteris-

tics noted above � competence or good luck. The �rst, represented by ηt, re�ects

�competence� attributed to the incumbent administration. The second, symbolized

as ξt, are shocks to growth beyond administration control (and competence). Both

ηt and ξt have zero mean with variance(s) σ2
η and σ2

ξ respectively. In less technical
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language Alesina and Rosenthal describe competence as follows:

The term ξt represents economic shocks beyond the governments control,

such as oil shocks and technological innovations. The term ηt captures

the idea of government competence, that is the government's ability to

increase the rate of growth without in�ationary surprises. In fact, even

if πt = πet , the higher is ηt the higher is growth, for a given ξt. We

can think of this competence as the government's ability to avoid large

scale ine�ciencies, to promote productivity growth, to avoid waste in the

budget process, so that lower distortionary taxes are needed to �nance a

given amount of government spending, etc (page 192).

Note also that competence can persist and support reelection. This feature is char-

acterized as an MA(1) process:

ηt = µt + ρµt−1, 0 < ρ ≤ 1 (4.2.3)

where µt is iid
(
0, σ2

µ

)
. The parameter ρ represents the strength of the persistence.

The lag or lags allow for retrospective voter judgments.

If we reference equation (4.2.1) again, let us assume voters' judgments include

a general sense of the average rate of growth (ŷn) and the ability to observe actual

growth (ŷt). Voters can evaluate their di�erence (ŷt − ŷn). Equation (4.2.1) also

suggests that when voters predict in�ation with no systematic error (i.e., πet = πt),

the result is non-in�ationary growth with no adverse real wage e�ect.

Next, economic growth performance is tied to voter uncertainty. Alesina and

Rosenthal formalize how economic growth rate deviations from the average can be

attributed to administration competence or fortuitous events:

ŷt − ŷn = εt = ηt + ξt. (4.2.4)

Equation (4.2.4) shows when the actual economic growth rate is greater than its

average or �natural rate� (i.e., ŷt > ŷn), then εt = ηt + ξt > 0. Again, the voters are

faced with uncertainty in distinguishing the incumbent's competence (ηt) from the

stochastic economic shock (ξt). However, because competence can persist, voters use

this property for making forecasts and giving greater or lesser weight to competence

over time.
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This behavioral e�ect is demonstrated by substituting equation (4.2.3) in (4.2.4):

µt + ξt = ŷt − ŷn − ρµt−1. (4.2.5)

Equation (4.2.5) suggests that voters can observe the composite shock µt + ξt based

on the observable variables, ŷt, ŷ
n, and µt−1 which are available at time t and t −

1. Determining the optimal estimate of competence, ηt+1, when the voters observe

ŷt. Alesina and Rosenthal demonstrate this result making a one-period forecast of

equation (4.2.3) and solving for its expected value (conditional expectation) at time

t (See the Appendix, Section 4.52):

Et (ηt+1) = Et (µt+1) + ρE (µt|ŷt) = ρE (µt|ŷt) , (4.2.6)

where Et (µt+1) = 0. Alesina and Rosenthal (1995) argue further that rational voters

would not use ŷt as the only variable to forecast ηt+1. Instead, they use all available

information, including ŷn and µt−1. As a result, a revised equation (4.2.6) is:

Et (ηt+1) = Et (µt+1) + ρE (µt|ŷt − ŷn − ρµt−1) (4.2.7)

= ρE (µt|µt + ξt) . (4.2.8)

Using this analogue for expectations in equation 4.2.7, competence, ηt+1, can be

forecasted by predicting µt+1and µt. Since there is no information available for

forecasting µt+1, rational voters can only forecast µt based on observable ŷt − ŷn −
ρµt−1 (at time t and t− 1) from equations 4.2.7 and 4.2.8.

4.3 Step 3: Unifying and Evaluating the Analogues

The method of recursive projection and equation (4.2.5) illustrates how the behav-

ioral analogue for expectations is linked to the empirical analogue for measurement

error (an error-in-variables �equation�):

Et (ηt+1) = ρE (µt|ŷt) = ρ
σ2
µ

σ2
µ + σ2

ξ

(ŷt − ŷn − ρµt−1) , (4.3.1)

where 0 < ρ
σ2
µ

σ2
µ+σ2

ξ
< 1. Equation (4.3.1) shows voters can forecast competence using

the di�erence between ŷt − ŷn, but also the �weighted� lag of µt (i.e., ρµt−1).

In equation (4.3.1), the expected value of competence is positively correlated
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with economic growth rate deviations. Voter assessment is �ltered by the coe�-

cient,
σ2
µ

σ2
µ+σ2

ξ
, representing a proportion of competence voters are able to interpret

and observe.

The behavioral implications are straightforward. If voters interpret that the

variability of economic shocks come solely from the incumbent's competence (i.e.,

σ2
ξ → 0), then

σ2
µ

σ2
µ+σ2

ξ
→ 1. On the other hand, the increase in the variability of

uncontrolled shocks, σ2
ξ , confounds the observability of incumbent competence since

the signal-noise coe�cient
σ2
µ

σ2
µ+σ2

ξ
decreases. Voters assign less weight to economic

performance in assessing the incumbent's competence.

Alesina and Rosenthal test the empirical implications of their theoretical model

with U.S. data on economic outcomes and political parties for the period 1915 to

1988. They �rst use the growth equation (4.2.1) to collect the estimated exogenous

shocks (εt) in the economy. With these estimated exogenous shocks, they then

construct their variance-covariance structure.

Since competence (ηt) in equation (4.2.3) follows an MA(1) process, they hypoth-

esize that a test for incumbent competence, as it pertains to economic growth, can be

performed using the covariances between the current and preceding year. The spe-

ci�c test centers on whether the changes in covariances with the presidential party in

o�ce are statistically larger than the covariances associated with a change in presi-

dential parties. They report null �ndings (e.g., equal covariances) and conclude that

there is little evidence to support that voters are retrospective and use incumbent

competence as a basis for support.

4.4 Leveraging EITM and Extending the Model

Alesina and Rosenthal provide an EITM connection between equations (4.2.1) , (4.2.3)

and their empirical tests. They link the behavioral concepts � expectations and

uncertainty � with their respective analogues (conditional expectations and mea-

surement error) and devise a signal extraction problem. While the empirical model

resembles an error-in-variables speci�cation, testable by dynamic methods such as

rolling regression (Lin 1999), they instead estimate the variance-covariance structure

of the residuals.

Their model is testable in other ways. We can, for example, leverage equation

(4.3.1) and account for other forms of uncertainty. Suzuki and Chappell (1996) (and

numerous others) provide such tests without any formalization. The formalization

of Alesina and Rosenthal can be used and linked to Suzuki and Chappell's test.
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Recall that the competence analogue (ηt) in their model is set up to be part of

the aggregate supply (AS) shock (εt = ηt + ξt). Accordingly, competence (ηt) is

de�ned as the incumbent's ability to promote economic growth via policies along the

AS curve. Let us assume voters are sophisticated enough to not reward incumbent

politicians for unusual economic growth resulting from an aggregate demand (AD)

policy or shock. Rather, voters think the AS policy is the source of long-lasting

(permanent) economic growth since it adds to productive capacity.2 On the other

hand, AD policy can at best produce temporary output gains and eventually leaves

the economy with higher in�ation.3

By leveraging the EITM framework, these studies lead to a direct relation between

the parameters of the formal and empirical models. In particular, the competence

equation (4.3.1) can be evaluated with the empirical tests and measures Suzuki and

Chappell use for permanent and temporary changes in economic growth.

4.5 Appendix

The tools in this chapter are used to establish a transparent and testable relation

between expectations (uncertainty) and forecast measurement error. The applied

statistical tools provide a basic understanding of:

• Measurement error in a linear regression context � error-in-variables regres-

sion.

The formal tools include a presentation of:

• A linkage to linear regression.

• Linear projections.

• Recursive projections.

These tools, when uni�ed, produce the following EITM relations consistent with re-

search questions termed signal extraction. The last section of this appendix demon-

2AS policies provide positive technology shocks. These policies range from government protection
of property rights to the provision of public infrastructure.

3Achen (2012) adds yet another wrinkle to how competence is characterized. A key feature of
his extension is to alter the MA(1) characterization by adding a constant term. This term signi�es
average competence and provides memory on incumbent administration competence. Achen's mod-
i�cation has important implications on how mypopic voters are and what circumstances can a�ect
retrospection. Achen's work also opens the possibility for using an AR(1) process and he discusses
this alternative.
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strates signal extraction problems which are directly related to Alesina and Rosen-

thal's model and test.

4.5.1 Empirical Analogues

Measurement Error and Error in Variables Regression

In a regression model it is well known that endogeneity problems (e.g., a relation

between the error term and a regressor) can be due to measurement error in the data.

A regression model with mis-measured right-hand side variables gives least squares

estimates with bias. The extent of the bias depends on the ratio of the variance of

the signal (true variable) to the sum of the variance of the signal and the variance

of the noise (measurement error). The bias increases when the variance of the noise

becomes larger in relation to the variance of the signal. Hausman (2001: 58) refers to

the estimation problem with measurement error as the �Iron Law of Econometrics�

because the magnitude of the estimate is usually smaller than expected.

To demonstrate the downward bias consider the classical linear regression model

with one independent variable:

Yt = β0 + β1xt + εt, t = 1, ..., n (4.5.1)

where εt are independent N(0, σ2
ε) random variables. The unbiased least squares

estimator for regression model (4.5.1) is:

β̂1 =

[
n∑
t=1

(xt − x̄)2

]−1 n∑
t=1

(xt − x̄)(Yt − Ȳ ). (4.5.2)

Now instead of observing xt directly, observe its value with an error:

Xt = xt + et, (4.5.3)

where et is an iid(0, σ2
e) random variable. The simple linear error-in-variables model

can be written as:

Yt = β0 + β1xt + εt, t = 1, ..., n (4.5.4)

Xt = xt + et.

In model (4.5.4), an estimate of a regression of Yt on Xt, with an error term
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mixing the e�ects of the true error εt and the measurement error et is presented.
4

It follows that the vector (Yt, Xt) is distributed as a bi-variate normal vector with

mean vector and covariance matrix de�ned as (4.5.5) and (4.5.6), respectively:

E {(Y,X)} = (µY , µX) = (β0 + β1µx, µx) (4.5.5)

[
σ2
Y σXY

σXY σ2
X

]
=

[
β2

1σ
2
x + σ2

ε β1σ
2
x

β1σ
2
x σ2

x + σ2
e

]
(4.5.6)

The estimator for the slope coe�cient when Yt is regressed on Xt is:

E(β̂1) = E


[

n∑
t=1

(Xt − X̄)2

]−1 n∑
t=1

(Xt − X̄)(Yt − Ȳ )

 (4.5.7)

= (σ2
X)−1σXY

= β1(
σ2
x

σ2
x + σ2

e

).

The resulting estimate is smaller in magnitude than the true value of β1. The

ratio of λ = σ2
x

σ2
X

= σ2
x

σ2
x+σ2

e
de�nes the degree of attenuation. In applied statistics, this

ratio, λ, is termed the reliability ratio. A traditional applied statistical remedy is

to use a �known� reliability ratio and weight the statistical model accordingly.5 As

presented above (4.5.7) the expected value of the least squares estimator of β1 is the

true β1 multiplied by the reliability ratio, so it is possible to construct an unbiased

estimator of β1 if the ratio of λ is known.

4.5.2 Formal Analogues6

Least Squares Regression

Normally we think of least squares regression as an empirical tool, but in this case

it serves as a bridge between the formal and empirical analogues ultimately creating

4To demonstrate this results, we derive Yt = β0 +β1Xt+(εt−β1et) from (4.5.4)). Assuming the
x′ts are random variables with σ2

x > 0 and (xt, εt, et)
′
are iid N [(ex, 0, 0)

′
, diag(σ2

x, σ
2
ε , σ

2
e)] where

diag(σ2
x, σ

2
ε , σ

2
e) is a diagonal matrix with the given elements on the diagonal.

5See Fuller (1987) for other remedies based on the assumption some of the parameters of the
model are known or can be estimated (from outside sources). Alternatively, there are remedies
which do not assume any prior knowledge for some of the parameters in the model (See Pal 1980).

6The following sections are based on Whittle (1963, 1983), Sargent (1987), and Woolridge (2008).
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a behavioral rationale for the ratio in equations (4.2.6) and (4.3.1). This section is a

review following Sargent (1987: 223-229).

Assume there is a set of random variables, y, x1, x2,, . . . , xn. Consider that we

estimate the random variable y which is expressed as a linear function of xi:

ŷ = b0 + b1x1 + · · ·+ bnxn, (4.5.8)

where b0 is the intercept of the linear function, and bi presents the partial slope

parameters on xi, for i = 1, 2, . . . , n. As a result, by choosing the bi, ŷ is the �best�

linear estimate which minimizes the �distance� between y and ŷ:

minai E (y − ŷ)2

⇒ E [y − (b0 + b1x1 + · · ·+ bnxn)]2 , (4.5.9)

for all i. To minimize equation (4.5.9), a necessary and su�cient condition is (in the

normal equation(s)):

E {[y − (b0 + b1x1 + · · ·+ bnxn)]xi} = 0 (4.5.10)

E [(y − ŷ)xi] = 0, (4.5.11)

where x0 = 1.

The condition expressed in equation (4.5.11) is called the orthogonality principle.

It implies that the di�erence between observed y and the estimated y according to

the linear function, ŷ, is not linearly dependent with xi for i = 1, 2, . . . , n.

Linear Projections

A least squares projection begins with:

y =
n∑
i=0

bixi + ε, (4.5.12)

where ε is the forecast error, E (ε
∑
bixi) = 0 and E (εxi) = 0, for i = 0, 1, · · · , n.

Note also that the random variable ŷ =
∑n

i=0 bixi, is based on b′is chosen to sat-

isfy the least squares orthogonality condition. This is called the projection of y on

x0, x1, ...,xn.
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Mathematically, it is written:∑
bixi ≡ P (y |1, x1, x2, · · · , xn ) , (4.5.13)

where x0 = 1. Assuming orthogonality, the equation (4.5.10) can be rewritten as a

set of normal equations:

Ey

Eyx1

Eyx2

...

Eyxn


=



1 Ex1 Ex2 · · · Exn

Ex1 Ex2
1 Ex1x2 · · ·

Ex2 Ex1x2
. . .

...
...

. . .

Exn Ex2
n





b0

b1

b2

...

bn


. (4.5.14)

Given that the matrix of Exixj in equation (4.5.14) is invertible for i, j ∈ {1, 2, . . . , n},
and solving for each coe�cient (bi):

b0

b1

...

bn

 = [Exixj]
−1 [Eyxk] . (4.5.15)

Applying the above technique to a simple example:

y = b0 + b1x1 + ε,

and: [
Ey

Eyx1

]
=

[
1 Ex1

Ex1 Ex2
1

][
b0

b1

]
. (4.5.16)

Using normal equation(s), the following estimates are derived for the intercept and

slope:

b0 = Ey − b1Ex1,

and:

b1 =
E (y − Ey) (x1 − Ex1)

E (x1 − Ex1)2

=
σx1y
σ2
x1

,
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where σx1y is the covariance between xi and y, and σ
2
x1
is the variance of x1.

7

Recursive Projections

The linear least squares identities can be used in formulating how agents update

their forecasts (expectations). Recursive projections are a key element of deriving

the optimal forecasts, such as the one shown in equation (4.3.1). These forecasts are

updated consistent with the linear least squares rule described above. The simple

univariate projection can be used (recursively) to assemble projections on many

variables, such as P (y |1, x1, x2, · · · , xn ) .

For example, when there are two independent variables, equation (4.5.13) can be

rewritten for n = 2 as:

y = P (y |1, x1, x2 ) + ε, (4.5.17)

implying:

y = b0 + b1x1 + b2x2 + ε, (4.5.18)

where Eε = 0. Assume that equations (4.5.17) and (4.5.18) satisfy the orthogonality

conditions: Eεx1 = 0 and Eεx2 = 0. If we omit the information from x2 to project

7From equation (4.5.16), we derive a similar equation expressed in equation (4.5.15):[
b0
b1

]
=

[
1 Ex1

Ex1 Ex2
1

]−1 [
Ey
Eyx1

]

=

 Ex2
1 −Ex1

(
Ex2

1 − (Ex1)
2
)−1

−Ex1

(
Ex2

1 − (Ex1)
2
)−1 (

Ex2
1 − (Ex1)

2
)−1

[ Ey
Eyx1

]
.

b1 can be expressed as:

b1 = − Ex1

Ex2
1 − (Ex1)

2Ey +
Eyx1

Ex2
1 − (Ex1)

2

=
−Ex1Ey + Eyx1

Ex2
1 − (Ex1)

2 .

For simplicity, we assume Ex1 = 0 and Ey = 0. Consequently:

b1 =
−Ex1Ey + Eyx1

Ex2
1 − (Ex1)

2

=
Eyx1

Ex2
1

=
σx1y

σ2
x1

.
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y, then the projection of y can only be formed based on the random variable x1:

P (y |1, x1 ) = b0 + b1x1 + b2P (x2 |1, x1 ) . (4.5.19)

In equation (4.5.19), P (x2 |1, x1 ) is a component where x2 is projected using 1 and

x1 to forecast y. Formally, equation (4.5.19) can be separated into three projections:

P (y |1, x1 ) = P (b0 |1, x1 ) + b1P (x1 |1, x1 ) + b2P (x2 |1, x1 ) . (4.5.20)

Equation (4.5.20) demonstrates that the projection of y given (1, x1) is a linear

function of the three projections:8

P (b0|1, x1) = b0,

P (x1|1, x1) = x1, and

P (ε|1, x1) = 0.

An alternative expression is to rewrite the forecast error of y given x1 as simply

the �forecast� error of x2 given x1 and a stochastic error term ε. Mathematically,

equation (4.5.18) is subtracted from equation (4.5.19):

y − P (y |1, x1 ) = b2 [x2 − P (x2 |1, x1 )] + ε, (4.5.21)

and simpli�ed to:

z = b2w + ε,

where z = y− P (y |1, x1 ) , and w = [x2 − P (x2 |1, x1 )] . Note that x2 − P (x2 |1, x1 )

is also orthogonal to ε, such that, E {ε [x2 − P (x2 |1, x1 )]} = 0 or E (εw) = 0.

8The �rst two conditions can be interpreted as follows. First, when predicting a constant b0
using 1 and x1, we are still predicting a constant b0. As a result, P (b0 |1, x1 ) = b0. Second, when
predicting x1 using 1 and x1, we can also predict x1, which is P (x1 |1, x1 ) = x1.
To show the results mathematically, rewrite the projection as the following linear function:

P (b0 |1, x1 ) = t0 + t1x1, where t0 and t1 are parameters. Using normal equations, we can

derive t0 and t1: t0 = Eb0 − t1Ex1, and t1 = E(b0−Eb0)(x1−Ex1)

E(x1−Ex1)2
. Since Eb0 = b0, then:

t1 = E(b0−Eb0)(x1−Ex1)

E(x1−Ex1)2
= 0, and t0 = Eb0 = b0. Therefore, P (b0 |1, x1 ) = t0 + t1x1 = b0.

For P (x1 |1, x1 ) = x1, we perform the same operations: P (x1 |1, x1 ) = t0 + t1x1. Now t0 =

Ex1 − t1Ex1, and t1 = E(x1−Ex1)(x1−Ex1)

E(x1−Ex1)2
= E(x1−Ex1)2

E(x1−Ex1)2
= 1. Therefore t0 = Ex1 − Ex1 = 0, and

P (x1 |1, x1 ) = t0 + t1x1 = 0 + x1 = x1. As a result, P (x1 |1, x1 ) = x1.
We rely on the orthogonality condition for the last expression: E (ε) = E (εx1) = 0. This gives us

P (ε |1, x1 ) = t0+t1x1. Now t0 = Eε−t1Ex1 and:t1 = E(ε−Eε)(x1−Ex1)

E(x1−Ex1)2
= E(εx1−εEx1−Eεx1+Eεx1)

E(x1−Ex1)2
=

0. Since t1 = 0, we �nd t0 = Eε− t1Ex1 = Eε = 0. Therefore, P (ε |1, x1 ) = 0.
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Now writing the following expression as a projection of the forecast error of y

that depends on the forecast error of x2 given x1:

P [y − P (y |1, x1 ) |x2 − P (x2 |1, x1 ) ] = b2 [x2 − P (x2 |1, x1 )] , (4.5.22)

or in simpli�ed form:

P (z|w) = b2w.

By combining equations (4.5.21) and (4.5.22), the result is:

y = P (y |1, x1 ) + P [y − P (y |1, x1 ) |x2 − P (x2 |1, x1 ) ] + ε. (4.5.23)

Consequently, equation (4.5.23) can also be written as:

P (y |1, x1, x2 ) = P (y |1, x1 ) + P [y − p (y |1, x1 ) |x2 − P (x2 |1, x1 ) ] , (4.5.24)

where P (y |1, x1, x2 ) is called a bivariate projection. The univariate projections are

given by:

P (x2 |1, x1 ), P (y |1, x1 ), and P [y − P (y |1, x1 ) |x2 − P (x2 |1, x1 ) ].

In this case, the bivariate projection equals three univariate projections. More

importantly, equation (4.5.24) is useful for purposes of describing optimal updating

(learning) by the least squares rule:

y = P (y |1, x1 ) + P [y − P (y |1, x1 ) |x2 − P (x2 |1, x1 ) ] + ε,

where y − P (y |1, x1 ) is interpreted as the prediction error of y given x1, and x2 −
P (x2 |1, x1 ) is interpreted as the prediction error of x2 given x1.

If initially we have data only on a random variable x1, the linear least squares

estimates of y and x2 are P (y |1, x1 ) and P (x2 |1, x1 ) respectively:

P (y |1, x1 ) = b0 + b1x1 + b2P (x2 |1, x1 ) . (4.5.25)

Intuitively, we forecast y based on two components: (i) b1x1 alone, and (ii) P (x2 |1, x1 ),

that is, the forecast of x2 given x1. When an observation x2 becomes available,

according to equation (4.5.24), the estimate of y can be improved by adding to

P (y |1, x1 ), and the projection of unobserved �forecast error� y − P (y |1, x1 ) on the

observed forecast error x2 − P (x2 |1, x1 ) .

In equation (4.5.24), P (y |1, x1 ) is interpreted as the original forecast, y−P (y |1, x1 )
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is the forecast error of y, given x1, and x2−P (x2 |1, x1 ) is the forecast error of x2 to

forecast the forecast error of y given x1. The above concept can be summarized in a

general expression:

P (y |Ω, x) = P (y |Ω) + P {y − P (y |Ω) |x− P (x |Ω)} ,

where Ω is the original information, x is the new information, and P (y |Ω) is the pre-

diction of y using the original information. The projection, P {y − P (y |Ω) |x− P (x |Ω)} ,
indicates new information has become available to update the forecast. It is no longer

necessary to use the original information to make predictions. In other words, one can

obtain x−P (x |Ω), the di�erence between the new information and the �forecasted�

new information, to predict the error of y: y − P (y |Ω).

4.5.3 Signal-Extraction Problems

Based on these tools it can now be demonstrated how conditional expectations with

recursive projections has a mutually reinforcing relation with measurement error and

error-in-variables regression. There are many examples of this �EITM-like� linkage

and they generally fall under the umbrella of signal extraction problems. Consider

the following examples.9

Application 1: Measurement Error

Suppose a random variable x∗ is an indepenent variable. However, measurement

error, e, exists so that the variable x is only observable:

x = x∗ + e, (4.5.26)

where x∗ and e have zero mean, �nite variance, and Ex∗e = 0. Therefore, the

projection of x∗ given an observable x is:

P (x∗ |1, x) = b0 + b1x.

Based on the least squares and the orthogonality conditions, we have:

b1 =
E (xx∗)

Ex2
=
E [(x∗ + e)x∗]

E (x∗ + e)2 =
E (x∗)2

E (x∗)2 + Ee2
, (4.5.27)

9The �rst example can be found in Sargent (1987: 229).
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and

b0 = 0. (4.5.28)

The projection of x∗ given x can be written as:

P (x∗ |1, x) =
E (x∗)2

E (x∗)2 + Ee2
x, (4.5.29)

where b1 = E(x∗)2

E(x∗)2+Ee2
is between zero and one.

The �measurement error� attenuation is now transparent. As E(x∗)2

Ee2
increases,

b1→1: the greater E(x∗)2

Ee2
is, the larger the fraction of variance in x is due to variations

in the actual value (i.e., E (x∗)2).

Application 2: The Lucas (1973) Model (Relative-General Uncertainty)

An additional application is the case where there is general-relative confusion. Here,

using Lucas's (1973) supply curve, producers observe the prices of their own goods

(pi) but not the aggregate price level (p).

The relative price of good i is ri is de�ned as:

ri = pi − p. (4.5.30)

The observable price pi is a sum of the aggregate price level and its relative price:

pi = p+ (pi − p) = p+ ri. (4.5.31)

Assume each producer wants to estimate the real relative price ri to determine their

output level. However, they do not observe the general price level. As a result, the

producer forms the following projection of ri given pi:

P (ri |pi ) = b0 + b1pi. (4.5.32)

According to (4.5.32), the values of b0 and b1 are:

b0 = E (ri)− b1E (pi) = E (pi − p)− b1E (pi) = −b1E (pi) , (4.5.33)
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and:

b1 =
E [ri − E (ri)] [pi − E (pi)]

E [pi − E (pi)]
2

=
E [ri − E (ri)] [(p+ ri)− E (p+ ri)]

E [(p+ ri)− E (p+ ri)]
2

=
Er2

i

Er2
i + Ep2

(4.5.34)

=
vr

vr + vp
, (4.5.35)

where vr = Er2
i is the variance of the real relative price, and vp = Ep2 is the

variance of the general price level. Inserting the values of b0 = −b1E (p) and b1 into

the projection (4.5.32), we have:

P (ri |pi ) = b1 [pi − E (p)] =
vr

vr + vp
[pi − E (p)] . (4.5.36)

Next factoring in an output component � the labor supply � and showing it is

increasing with the projected relative price we have:

li = βE (ri |pi ) , (4.5.37)

and:

li =
βvr

vr + vp
[pi − E (p)] . (4.5.38)

If aggregated over all producers and workers, the average aggregate production is:

y = b [p− E (p)] , (4.5.39)

where b = βvr
vr+vp

.

Lucas's (1973) empirical tests are directed at output-in�ation trade-o�s in a vari-

ety of countries.10 Equation (4.5.39) represents the mechanism of the general-relative

price confusion:

y = β
vr

vr + vp
[p− E (p)] , (4.5.40)

where vp is the variance of the nominal demand shock, and p−E (p) is the nominal

demand shock.

10The empirical tests are described in Romer (1996: 253-254).
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Application 3: The Derivation of the Optimal Forecast of Political Incum-

bent Competence

This application uses the techniques of recursive projections and signal extraction

to derive the optimal forecast of political incumbent competence in equation (4.3.1).

In Section 4.2, the public's conditional expectations of an incumbent's competence

at time t+ 1 (as expressed in equations (4.2.7) and(4.2.8)) is:

Et (ηt+1) = Et (µt+1) + ρE (µt|ŷt − ŷn − ρµt−1)

Et (ηt+1) = ρE (µt|µt + ξt) , (4.5.41)

where Et (µt+1) = 0.

Using recursive projections, voters forecast µt using µt + ξt and obtain the fore-

casting coe�cients a0 and a1:

P (µt|µt + ξt) = a0 + a1 (µt + ξt) , (4.5.42)

with:

a1 =
cov (µt, µt + ξt)

var (µt + ξt)

=
E (µt (µt + ξt))

E [(µt + ξt) (µt + ξt)]

=
σ2
µ

σ2
µ + σ2

ξ

,

and:

a0 = E (µt)− a1E (µt + ξt) = 0,

where E (µt) = E (µt + ξt) = 0. The projection for µt is written as:

Et (µt|µt + ξt) = P (µt|µt + ξt) = a0 + a1 (µt + ξt)

=
σ2
µ

σ2
µ + σ2

ξ

(µt + ξt) . (4.5.43)

Placing equation (4.2.5) into equation (4.5.43):

Et (µt|µt + ξt) =
σ2
µ

σ2
µ + σ2

ξ

(ŷt − ŷn − ρµt−1) . (4.5.44)
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The �nal step is inserting equation (4.5.44) in equation (4.5.41) and obtaining the

optimal forecast of competence at t+ 1:

Et (ηt+1) = ρE (µt|µt + ξt)

= ρ
σ2
µ

σ2
µ + σ2

ξ

(ŷt − ŷn − ρµt−1) .

This is the expression in equation (4.3.1).



Chapter 5

Strategists and Party Identi�cation

An important debate in political science centers on the persistence of party iden-

ti�cation, termed macropartisanship (See Erikson, MacKuen, and Stimson (2002:

109-151)). Using Clarke and Granato's (2004) example of an EITM formulation it

is assumed political campaign advertisements in�uence the public's party identi�-

cation. In particular, party identi�cation persistence can be in�uenced by a rival

political party strategist's use of campaign advertisements. Consequently, shocks to

macropartisanship can either be ampli�ed or die out quickly depending on the rival

political strategist's actions.

The EITM linkage is the relation between the behavioral concept of expectations

and the empirical concept of persistence. Empirical tools for this example require a

basic understanding of autoregressive processes. Formal tools include an extended

discussion of conditional expectations modeling, di�erence equations (various orders),

their solution procedures, and relevant stability conditions.

5.1 Step 1: Relating Behavioral and Applied Statis-

tical Concepts: Expectations and Persistence

Clarke and Granato (2004) relate agent expectations to the persistence of agent

behavior. It is demonstrated how a rival political strategist can use campaign adver-

tisements to in�uence aggregate persistence in party identi�cation.

The model is based on three equations. Each citizen (i) is subject to an event

(j) at time (t). Clarke and Granato then aggregate across individuals and events so

69
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the notation will only have the subscript t.

Mt = a1Mt−1 + a2Et−1Mt + a3Ft + u1t (5.1.1)

Ft = b1Ft−1 + b2At + u2t (5.1.2)

At = c1At−1 + c2 (Mt −M∗) + c3Ft−1. (5.1.3)

The �rst equation (5.1.1) speci�es what in�uences aggregate party identi�cation

(Mt). The variable Mt−1 accounts for the empirical concept of persistence. The

behavioral concept in the model is citizen expectations. It is assumed citizens have

an expectation of what portion of the population identi�er with a particular political

party (Et−1Mt). In forming their expectations, citizens use all available and relevant

information (up to time t−1) as speci�ed in this model (i.e., rational expectations).1

Further party identi�cation depends on how favorably a citizen views the national

party (Ft). Finally, party identi�cation can be subject to unanticipated stochastic

shocks (realignments) (u1t) where u1t ∼ N
(
0, σ2

u1t

)
. These relations are assumed to

be positive � a1, a2, a3 ≥ 0.

Equation (5.1.2) represents citizens' impression and sense of favorability about

a political party (Ft). In this equation, favorability is a linear function of the lag

of favorability (Ft−1) and an advertising resource variable (At). u2t is a stochastic

shock representing unanticipated events (uncertainty), where u2t ∼ N
(
0, σ2

u2t

)
. The

parameter b1 ≥ 0, while b2 T 0 depending on the tone and content of the advertise-

ment.

Equation (5.1.3) presents the contingency plan or rule that (rival) political strate-

gists use. Clarke and Granato posit that political strategists track their previous pe-

riod's advertising resource expenditures (At−1) and react to that period's favorability

rating for the (rival) national party (Ft−1). The strategists also base their current

expenditure of advertisement resources on the degree to which macropartisanship

(Mt) approximates a prespeci�ed and desired target (M∗).

Ideally, political strategists want (Mt −M∗) = 0. The parameters c1 and c3 are

positive. The parameter c2 is countercyclical (−1 ≤ c2 < 0): it re�ects a willingness

to increase or conserve their advertising resources depending on whether macropar-

1Rational expectations is only one type of expectation modeling. It has particular implications
for how fast citizen's adjust to new information, which in this case is political adverstisements. See
the Appendix, Section 5.5.2 for a discussion on the speed of adjustment.
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tisanship is above or below the target.

5.2 Step 2: Analogues for Expectations and Persis-

tence2

The reduced form for macropartisanship is determined by substituting (5.1.3) into

(5.1.2). Note that there is an autoregressive component (Θ1Mt−1) in the reduced

form for macropartisanship:

Mt = Θ0 + Θ1Mt−1 + Θ2Et−1Mt + Θ3At−1 + Θ4Ft−1 + ε∗t , (5.2.1)

where:

Θ0 =
b2c1Y

∗

(1− a2b2c2)
,

Θ1 =
a1

(1− a2b2c2)
,

Θ2 =
a2

(1− a2b2c2)
,

Θ3 =
b2c1

(1− a2b2c2)
,

Θ4 =
(b1 + b2c3)

(1− a2b2c2)
,

ε∗t =
u2t + u1t

(1− a2b2c2)
.

The system is simpli�ed to a model of macropartisanship that depends on lagged

macropartisanship and also a conditional expectation at time t−1 of current macropar-

tisanship. This lagged dependent variable is the analogue for persistence (See the

Appendix, Section 5.5.1). Note that the prior values of advertising and favorability

may also have an e�ect.

Because (5.2.1) possesses a conditional expectations operator we must make it

a function of other variables (not operators) (See the Appendix, Section 5.5.2). In

this example, �closing the model� and �nding the rational expectations equilibrium

(REE) involves taking the conditional expectation at time t − 1 of equation (5.2.1)

2In this example, the applied statistical analogue is an autoregressive process and the formal
analogue is conditional expectations. The description of theses analogues and the tools to develop
these analogues can be found in the Appendix, Sections 5.5.1, and 5.5.2.
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and then substituting this result back into equation (5.2.1):

Mt = Π1 + Π2Mt−1 + Π3At−2 + Π4Ft−2 + ξ′t. (5.2.2)

Equation (6.3.1) is the minimum state variable (MSV) solution (McCallum, 1983)

for macropartisanship.3 Macropartisanship (Mt) depends also on its past history, the

autoregressive component, (Mt−1).

5.3 Step 3: Unifying and Evaluating the Analogues

The persistence of macropartisanship (Π2) is now shown as dependent on the per-

sistence and willingness of rival political strategists to maintain a rival macroparti-

sanship target (c2). In other words, the EITM linkage is the MSV with the AR(1)

component in (6.3.1).

The linkage is this case is the reduced form AR(1) coe�cient expression, Π2:

Π2 =
a1 + b2c2 (c1 + b1 + b2c3)

1− b2c2 − a2

. (5.3.1)

Taking the derivative of (5.3.1) with respect to (c2) and �nding the following relation

we have:
∂Π2

∂c2

=
b2 (a1 + (1− a2)A)

(1− a2 − b2c2)2 , (5.3.2)

where A = (b1 + c1 + b2c3) . Given the assumptions about the signs of the coe�-

cients in the model, the numerator is positive when a2 < 1. Therefore, under these

conditions, the relation is positive
(
∂Π2

∂c2
> 0
)
.4

The relation between c2 and Π2 is demonstrated in Figure 5.3.1. Using the fol-

lowing values: a1 = a2 = b1 = b2 = c1 = c3 = 0.5. The parameter c2 ranges from

0.0 to -1.0. The value of c2 is varied between 0.0 and −1.0 and we �nd that the per-

sistence (autocorrelation) in macropartisanship (Π2 ) � all things equal � is zero

when c2 = −0.8.

On the other hand, macropartisanship persistence increases (Π2 → 1.0) when

rival political strategists fail to react (c2 → 0.0) to deviations from their prespeci�ed

target. A conclusion derived from this model is that negative advertisements from

3Note: Π1 =
(

Θ0

1−Θ2
−
[

Θ3

1−Θ2
− Θ4

1−Θ2
b2

]
c2Y

∗
)
,Π2 =

(
Θ1

1−Θ2
+
[

Θ3

1−Θ2
+ Θ4

1−Θ2
b2

]
c2

)
,

Π3 =
([

Θ3

1−Θ2
+ Θ4

1−Θ2
b2

]
c1

)
,Π4 =

(
Θ3

1−Θ2
c3 + Θ4

1−Θ2
[b1 + b2c3]

)
,and ξ′t =

(
Θ4

1−Θ2
u2t + ε∗t

)
.

4Note, for ∂Π2

∂c2
> 0 : a2 >

−A
1−A is the necessary condition and a2 < 1is the su�cient condition.
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Figure 5.3.1: Simulation Results

rival political parties can in�uence the persistence of their opponents national party

identi�cation.

5.4 Leveraging EITM and Extending the Model

Among the ways to extend the model is to use an alternative way to model citizen

expectations. In this model the use of RE can limit the complexities of expectation

formation. Alternatives could include the use of expectations formation where the

public updates at a far slower pace and using information sets that are far more

limited. There is also the question of data. Currently, it is di�cult to measure

and link speci�c advertisements to response in real time. One way to deal with

this particular design concern is to use experiments and ascertain the treatment and

response e�ects with lags of far shorter duration.
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5.5 Appendix

To assess the degree of persistence in a variable, autoregressive estimation is the most

frequently used technique in empirical research. However, in EITM, persistence is

behaviorally based. Persistence can be due to many things including brand loyalty

and party loyalty. Persistence might also arise because of habit formation, meaning

choosing an option in the present period directly increases the probability of choosing

it again in future periods.5

While the example in this chapter is about party identi�cation � and an ap-

propriate province of political science � the foundations for developing the tools

to model expectations is drawn from economics. Since Muth (1961), a great deal

of theoretical research uses RE. RE is a particular equilibrium concept representing

the optimal choice of the decision rule used by agents depending on the choices of

others. �An RE equilibrium (REE) imposes a consistency condition that each agents'

choice is a best response to the choices of others� (Evans and Honkapohja 2001: 11)

. Muth (1961) de�ned expectations to be rational if they were formed according to

the model describing the behavior.

It is also possible to relate RE to autoregressive processes. Let there be a time

series (zt) generated by a �rst-order autoregression:

zt = λ0 + λ1zt−1 + νt, for zt−1 ∈ It−1 (5.5.1)

where νt are independent N(0, σ2
ν) random variables, |λ1| < 1, and It−1 represents all

possible information at period t−1. If the agent acts rationally, the equation (5.5.1)

is treated as the data generating process (DGP). The mathematical expression of

RE corresponding to equation (5.5.1) is:

E[zt|zt−1] = zet = λ0 + λ1zt−1. (5.5.2)

With this simple linkage in mind, the tools in this chapter are used to establish a

transparent and testable relation between expectations and persistence. The applied

statistical tools provide a basic understanding of:

• Autoregressive processes.

The formal tools include a presentation of:

• Conditional expectations (naive, adaptive, and rational).

5See Shachar (1992) for the role of habit formation in voting decisions.
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• Di�erence equations.

• Method of undetermined coe�cients (minimum state variable procedure).

These tools are used in various applications for models where RE is assumed just as

in this chapter.

5.5.1 Empirical Analogues

Autoregressive Processes

An autoregressive process for the time series of Yt is one in which the current value of

Yt depends upon past values of Yt and a stochastic disturbance term.6 A convenient

notation for an autoregressive process is AR(p), where p denotes the maximum lag

of Yt , upon which Yt depends. Note that in an AR(p) process, lags are assumed to

be present from 1 through to p.

For simplicity, we now use AR(1) for illustration. An AR(1) process represents

a �rst-order autoregressive process where Yt depends upon Yt−1 and a disturbance

term, εt:

Yt = φ1Yt−1 + εt, (5.5.3)

where εt is a white noise that has zero mean, constant variance, and zero autocorre-

lation. The autoregressive parameter φ1 in equation (5.5.3) can take on values with

distinct empirical implications bearing on the persistence of a process. In particular,

if φ1 > 1, the process is explosive meaning Yt will grow without limit.

6Time series data are discretely ordered by some period. They di�er from cross-sectional data
in that unlike their cross-sectional cousin, time series are a sequence of data points of the same
entity over a period of time. For political science, examples include presidential approval and
macropartisanship, while in economics, many macroeconomic data, such as gross domestic product
and unemployment rates, are time series. A key property of time series data is stationarity. The
consequences of having stationary processes is not trivial. In fact, it is a crucial requirement in that,
among other things, most probability moments � the mean, the variance � and all the constituent
statistics that derive from these moments are based on the assumption of a stationary time series.
No valid inference is achievable absent some assurance that the data and model are stationary. The
reason is that non-stationary data a�ects the moments (mean, variance, for example) of the series
and these moments are used in all sorts of inferential statistics such as the t- and F-test. With this
in mind, an intuitive de�nition for stationarity is:

A data series (or model) is stationary if there is no systematic change in the mean
(e.g., no trend), no systematic stochastic variation, and if strict periodic variations
(seasonal) are stable. Time plays no role in the sample moments.
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Random Walk Processes and the Persistence of Random Shocks

A special case arises when φ1 = 1. In this case, equation (5.5.3) can be written as:

Yt = Yt−1 + εt. (5.5.4)

Equation (5.5.4) is termed a �pure random walk� process. A pure random walk

process is a best guess of Yt+1, given information at period t, is Yt. The relation

between a random walk process and the �persistence� of random shocks is also of

importance.

To see this relation, consider an AR(1) process with a unit root, φ1 = 1 (i.e.,

equation (5.5.4)). If the pure random walk process of equation (5.5.4) starts at

t = 1, the process then is Y1 = Y0 + ε1. In the next period, t = 2, the process is

Y2 = Y1 + ε2 = (Y0 + ε1) + ε2. Generalizing:

Yt = Y0 +
t∑
i=1

εt. (5.5.5)

Equation (5.5.5) indicates the impact of a particular shock persists and will never

die out. Also, it can be demonstrated from equation (5.5.5) that the mean value of

Yt wanders over time.

Now, using equation (5.5.3), trace how persistence evolves if we have a stationary

process, 0 < φ1 < 1. The result is the shock does die out over time. The process is

also mean reverting. To illustrate this, consider an AR(1) process with φ1 = 0.5:

Yt = 0.5Yt−1 + εt. (5.5.6)

If we start at t = 1, the process is: Y1 = 0.5Y0 + ε1. In successive periods we have:

Y2 = 0.5Y1 + ε2

= 0.5 (0.5Y0 + ε1) + ε2

= 0.52Y0 + 0.5ε1 + ε2,

and

Y3 = 0.5Y2 + ε3

= 0.5
[
0.52Y0 + 0.5ε1 + ε2

]
+ ε3

= 0.53Y0 + 0.52ε1 + 0.5ε2 + ε3.
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In general:

Yt = 0.5tY0 +
t∑
i=1

0.5t−iεi. (5.5.7)

Equation (5.5.7) indicates the e�ect of a particular shock, say at period 1, on all the

subsequent periods does die out when t→∞ (i.e, the shock is not persistent).7

5.5.2 Formal Analogues

Conditional Expectations

The use of expectations in economic models has a long history. While RE is featured

in this particular chapter, there are many ways to model expectations and each

method has distinct behavioral implications. Here background is provided on three

approaches:

1. Naive or static expectations.

2. Adaptive expectations.

3. Rational expectations.

The solution procedures for RE are then presented. Because the development of

expectations modeling was largely the creation of economics, the variables and ex-

amples are economic in nature. We stay true to those original examples and the

variables used. However, as this chapter demonstrates, the application of these tools

can be used for any social science question where expectations are a behavioral and

theoretical component.

Static Expectations: The Cobweb Model8

Static expectations (also called naive expectations) assume agents form their expec-

tations of a variable based on their previous period (t− 1) observation of the variable.

An example illustrating the use of static expectations is the traditional cobweb model

which was used to determine the dynamic process of prices in agricultural markets.

7Autoregressive processes can be estimated using ordinary least squares (OLS). See Box and
Jenkins (1970, 1976), for an extensive discussion on the estimation of autoregressive processes. A
comprehensive discussion of time series methods can be found in Hamilton (1994). Also, Johnston
and DiNardo (1996) provide a basic framework in time series methods, within the broader context
of econometric methods.

8See Enders (2009) for background material for the following sections.
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The cobweb model consists of demand and supply curves, respectively:

qdt = α− βpt + εdt , (5.5.8)

and:

qst = γ + λpet + εst , (5.5.9)

where β > 0, λ > 0, α > γ > 0. εdt ∼ iid
(
0, σ2

εd

)
and εst ∼ iid (0, σ2

εs) are stochastic

demand and supply shocks with zero mean and constant variance, respectively.

Equation (5.5.8) is a demand schedule where consumers decide the level of quan-

tity demanded
(
qdt
)
given the current price level in the market (pt) and other stochas-

tic factors
(
εdt
)
at time t. From equation (5.5.9), we assume producers make decisions

on the production level (qst ) based on the expected price level at time t, pet . Since the

actual market price pt is not revealed to producers until goods have been produced

in the market, producers make a decision on the level of production by forecasting

the market price.

The market equilibrium, where qdt = qst , gives us the dynamic process of the price

level:

pt =

[
α− γ
β

]
−
(
λ

β

)
pet +

[
εdt − εst
β

]
. (5.5.10)

Equation (5.5.10) is called the cobweb model : the current price level (pt) depends

on the expected price level (pet ) and a composition of stochastic shocks. Producers

form static expectations where they choose the level of production qst at time t by

observing the previous price level at time t−1 (i.e., pet = pt−1). Substituting pet = pt−1

into equation (5.5.10):

pt =

[
α− γ
β

]
−
(
λ

β

)
pt−1 +

[
εdt − εst
β

]
. (5.5.11)

Equation (5.5.11) shows the current price level is determined by the past price level

and stochastic shocks. Since the initial price level pt is not in a stationary equilibrium,

the price approaches the equilibrium p∗ in the long run when certain conditions exist.

In this model,
∣∣∣λβ ∣∣∣ < 1: limt→∞ pt = p∗. The converging process is shown in Figure

(5.5.1).

The Use of Di�erence Equations

The result in Figure 5.5.1 can be demonstrated using stochastic di�erence equations.

Equation (5.5.11) is also called a stochastic �rst-order di�erence equation with a
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Figure 5.5.1: Cobweb Model with Static Expectation Formation

constant. The equation (5.5.2) can be presented in a simpler form:

pt = a+ bpt−1 + et, (5.5.12)

where a = α−γ
β
, b = −λ

β
, and et =

εdt−εst
β

. To see the sequence of the price level we

solve by iteration. Assuming the initial price level is pt=0 = p0, the price level at

time t = 1 is:

p1 = a+ bp0 + e1.

Using the above equation, we solve for p2:

p2 = a+ bp1 + e2

= a+ b (a+ bp0 + e1) + e2

= a+ ab+ b2p0 + be1 + e2.

With a similar substitution, p3 is:

p3 = a+ bp2 + e3

= a+ b
(
a+ ab+ b2p0 + be1 + e2

)
+ e3

= a+ ab+ ab2 + b3p0 + b2e1 + be2 + e3. (5.5.13)

If we iterate the equation n times, we have (for n ≥ 1):

pn = a

n−1∑
i=0

bi + bnp0 +
n−1∑
i=0

bien−i, (5.5.14)
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and by extension we can show if t = n = 3, then:

p3 = a

3−1∑
i=0

bi + b3p0 +
3−1∑
i=0

bie3−i

= a
2∑
i=0

bi + b3p0 +
2∑
i=0

bie3−i

= a
(
b0 + b1 + b2

)
+ b3p0 +

(
b0e3−0 + b1e3−1 + b2e3−2

)
= a+ ab+ ab2 + b3p0 + e3 + be2 + b2e1. (5.5.15)

Note equations (5.5.13) and (5.5.15) are identical.

Using equation (5.5.14), the current price level pt depends on the initial level p0

and the sequence of stochastic shocks {ei}ti=1 . Assuming |b| < 1, then limn→∞ b
n = 0,

and limn→∞ (b0 + b1 + · · ·+ bn) = limn→∞
∑n

i=0 b
i = 1

1−b . Therefore, in the long run,

the price level equals:

pn→∞ =
a

1− b
+
∞∑
i=0

bien−i. (5.5.16)

Equations (5.5.14) and (5.5.16) show transitory and stationary levels of price,

respectively. Using the previous parameter values in the cobweb model: a = α−γ
β

=

10, and b = −λ
β

= −0.8, we replicate Figure (5.5.2). Based on equations (5.5.14)

and (5.5.16) by assuming p0 = p∗ = 5.56, e1 = 4.44, and ei = 0 for i > 1 we have:

pn = 10
n−1∑
i=0

(−0.8)i + (−0.8)n p0 +
n−1∑
i=0

(−0.8)i en−i

= 10
n−1∑
i=0

(−0.8)i + (−0.8)n (5.56) + (−0.8)n−1 (4.44) .

As t = n =∞, we have:

pn→∞ = p∗ = 10
∞∑
i=0

(−0.8)i =
10

1− (−0.8)
= 5.56,

where:

lim
n→∞

(−0.8)n = 0

and:

lim
n→∞

[
(−0.8)0 + (−0.8)1 + · · ·+ (−0.8)n

]
= lim

n→∞

n∑
i=0

(−0.8)i =
1

[1− (−0.8)]
.
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Figure 5.5.2: Price Movements in the Cobweb Model

Expectational Errors: Speed of Adjustment

An important issue in expectations modeling is the speed of adjustment. Naive or

static expectation models contain agents who are relatively slow to adjust and update

their forecasts. The movement of price over time is assumed by the constant terms

and slope coe�cients for demand and supply: α = 20, γ = 10, β = 1, λ = 0.8, and

|λ/β| = 0.8 < 1. Recall the stationary equilibrium p∗ is 5.56. At time t = 1 assume

there is a stochastic shock � to either demand or supply (or both). This moves the

price level from p∗ = 5.56 to p1 = 10. In Figure (5.5.2), we see that the price level

�uctuates and approaches the equilibrium p∗ = 5.56 in the long run.

Intuitively, if there is a one-time shock that shifts the demand or supply curve (or

both) producers are assumed to passively determine the current level of production

by observing the previous price level. A surplus or shortage, would exist while the

market price deviated from the equilibrium until t→∞.

The behavioral implication when agents �naively� form expectations based on

the past period's observation are as follows: agents systematically forecast above or

below the actual value for an extensive time period. McCallum (1989) terms this

sluggishness in error correction: systematic expectational errors.

Adaptive Expectations

Of course, agents can actively revise their expectations when they realize their fore-

casting mistakes. This alternative formation of expectations is called adaptive expec-

tations. The revision of current expectations is a function of the di�erence between
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the actual observation and the past expectation:

Expectational Revision = Function (Actual Observation - Past Expectation).

If agents make forecast errors in the previous period, then they revise their current

expectations. Mathematically, adaptive expectations can be written as:

pet − pet−1 = (1− θ)
(
pt−1 − pet−1

)
, (5.5.17)

where 0 < θ < 1 represents the degree (or speed) of expectational revision. When θ =

0, pet−1 = pt−1, agents do not revise their expectations: they have static expectations.

On the other hand, if θ = 1, pet = pet−1, then agents form their current expectations

(pet ) based on the past expectations
(
pet−1

)
only. By arranging equation (5.5.17), we

have:

pet = θpet−1 + (1− θ) pt−1. (5.5.18)

Equation (5.5.18) also shows that the expectation of the current price (pet ) is

the weighted average of past expectation
(
pet−1

)
and the past observation (pt−1). To

recover the expected price level at time t, the method of iterations is applied. The

expectations at time t− 1 and t− 2 is:

pet−1 = θpet−2 + (1− θ) pt−2, (5.5.19)

and:

pet−2 = θpet−3 + (1− θ) pt−3, (5.5.20)

respectively. Substituting (5.5.20) into (5.5.19) and then substituting it back to

equation (5.5.18), we have:

pet = θ
{
θ
[
θpet−3 + (1− θ) pt−3

]
+ (1− θ) pt−2

}
+ (1− θ) pt−1

= θ3pet−3 + θ2 (1− θ) pt−3 + θ (1− θ) pt−2 + (1− θ) pt−1. (5.5.21)

Iterating equation (5.5.18) n times:

pet = θnpet−n + (1− θ)
n−1∑
i=1

θi−1pt−i.



CHAPTER 5. STRATEGISTS AND PARTY IDENTIFICATION 83

If n→∞, then:

pet = (1− θ)
∞∑
i=1

θi−1pt−i, (5.5.22)

for |θ| < 1.

Equation (5.5.18) shows the current expectation is the weighted average of the

last period expectation and observations. An alternative interpretation based on

equation (5.5.22) is that the expected price level for the current period is a weighted

average of all price levels observed in the past (with geometrically declining weights).

Under adaptive expectations, agents make their forecast of a variable by weight-

ing its past behavior (Cagan 1956; Friedman 1957; Nerlove 1958). However, just

as with the assumption of static expectations, systematic expectational errors can

still be generated. Unexpected stochastic shocks have permanent e�ects on future

expectations formation.

This result is inconsistent with central tenets in microeconomic theory. If agents

know that such errors are systematically generated, they have incentives to avoid

them. For example, agents have the incentive to collect other (or even all available)

information for improving the forecast of the observed variable. Theoretically, one

way to avoid the problem of having agents make systematic errors is to assume they

have rational expectations (RE) (Muth 1961; Lucas 1972, 1973).

Rational Expectations

Under RE, agents are assumed to take conditional (mathematical) expectations of all

relevant variables. Agents form their expectations according to all of the information

available at time t. The behavioral implications are very di�erent from static or

adaptive expectations when it comes to the speed of correcting forecast errors. RE

also has very di�erent implications for persistence.

Mathematically, RE can be written as the projection:

pet+j = E (pt+j |It ) , (5.5.23)

where pet+j is the subjective expectations of pt+j formed in time t, and E (pt+j |It )
is a mathematical expectations of pt+j given the information It available at time

t. Statistically, E (pt+j |It ) is interpreted as the mean of the conditional probability

distribution of pt+j based on available information It at time t. Equation (5.5.23)

implies agents use all information available at time t to forecast the variable of

interest for time t+ j.
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More importantly, agents' ability to form a conditional probability distribution of

pt+j also implies that agents �know� the structure of the model. For example, agents

are able to form a conditional distribution of pt given the parameters of α, β, γ, and

λ as known in equation 5.5.10. It is di�cult to imagine agents can know the �true�

model in the �rst place and then construct a probability distribution based on the

model.9

As mentioned earlier, systematic expectational errors are generated when agents

form their adaptive expectations given the related information available. These sys-

tematic expectational errors can be eliminated under RE. De�ning the expectational

error as the di�erence between actual observation at time t+ 1 and the expectation

for time t+ 1:

pt+1 − pet+1.

If agents systematically over -predict or under -predict the variable of interest, then

the �average� of the expectational errors is either larger than or less than zero. Under

RE there is no systematic forecast error.

To demonstrate this result under RE we calculate the expected value of the

expectational errors as:

E
(
pt+1 − pet+1

)
= E [pt+1 − E (pt+1 |It )]

= E (pt+1)− E [E (pt+1 |It )]

= E (pt+1)− E (pt+1) = 0, (5.5.24)

where E [E (pt+1 |It )] = E (pt+1) is the unconditional expectation of the conditional

expectations of pt+1, given the information set It. This is simply the unconditional

expectation of pt+1.
10 This result can also be explained by a statistical property

9An alternative assumption is agents �learn� the structure of the model over time by least squares
to form optimal conditional expectations (Bray 1982; Bray and Savin 1986; Evans 1985; Marcet and
Sargent 1986, 1987; Evans and Honkapohja 2001). This is called the adaptive learning approach
and is discussed in chapters 6 and 7.

10To show E [E (pt+1 |It )] = E (pt+1), it is necessary to review some important statistical proper-
ties. Let us generalize the statements below and use a variable X. Assume X is a random variable
where its numerical values are randomly determined. For the discrete case, the variable X has
a set of J random numeral values, x1, x2, . . . , xJ . The probability of any numerical value, xj , for
j = 1, 2, . . . , J, can be represented by a probability density function f (xj) = Prob {X = xj} ≥ 0.

Note that the sum of the probability for all possible numerical values is
∑J
j=1 f (xj) = 1, and

f (xk) = 0, for any xk /∈ {x1, . . . xJ} . Based on the density function, we calculate the (uncondi-
tional) expected value of the random variable X:

E (X) =

J∑
j=1

xjf (xj) . (5.5.25)
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called the law of iterated expectations 11

The law of iterated expectations suggests that, given an information set Ω and

a subset of information ω ⊂ Ω, for a variable of interest x, the conditional expecta-

tions of the conditional expectations of x, given a larger information set is just the

If g (xj) is de�ned as a function for any random value xj for all j = 1, 2, . . . , J , then the expected
value of g (X) is:

E [g (X)] =

J∑
j=1

g (xj) f (xj) . (5.5.26)

Assuming there is another random variable Y which has a set ofM random values, y1, y2, . . . , yM .
Assuming further that X and Y are jointly distributed random variables such that the joint
probability density function is f (xj , ym) = Prob {X = xj and Y = ym} ≥ 0, for j = 1, 2, . . . J,

and m = 1, 2, . . . ,M. Again, note
∑M
m=1

∑J
j=1 f (xj , ym) = 1, and f (xk, yh) = 0, for any

xk /∈ {x1, . . . xJ} or yh /∈ {y1, . . . yM} . Based on the joint density function f (xj , ym) , the single
density function can be calculated for the random variable X by summing up all joint probability
of f (xj , ym) for any given xj :

f (xj) =

M∑
m=1

f (xj , ym) . (5.5.27)

Similarly, the single density function can be derived for the random variable Y :

f (ym) =

J∑
j=1

f (xj , ym) . (5.5.28)

In addition, if there is a multivariate function g (xj , ym) , then the expected value of g (X,Y ) is:

E [g (X,Y )] =

M∑
m=1

J∑
j=1

g (xj , ym) f (xj , ym) . (5.5.29)

The last statistical property introduced is the conditional probability density function. This is
de�ned as the conditional probability density function of y given x (subscripts are dropped for
convenience) as:

f (y|x) =
f (x, y)∑
y f (x, y)

=
f (x, y)

f (x)
, (5.5.30)

for f (x) > 0. As before, the conditional probability density function is the same form but now it is
of x given y:

f (x|y) =
f (x, y)∑
x f (x, y)

=
f (x, y)

f (y)
, (5.5.31)

for f (y) > 0. Equation (5.5.30) shows the probability of any numerical value ym given a speci�c
value of a random variable X. Therefore, we de�ne the conditional expected value of Y given X as:

E (Y |X) =
∑
y

yf (y|x) . (5.5.32)

Based on the above statistical properties, we are able to show that E [E (Y |X)] = E (Y ) by
using the fact that E [g (X,Y )] =

∑
y

∑
x g (x, y) f (x, y) in equation (5.5.29) and assuming that

E (Y |X) =
∑
y yf (y|x) = g (x, y) in equation (5.5.32). All we need to show is that E [E (Y |X)] =

E [g (X|Y )] = E (Y ) . This result validates E [E (pt+1 |It )] = E (pt+1) in condition (5.5.24).
11Note that the expectation operator, E (·), is in linear form. The ideas of recursive expectations

and the law of iterated expectations are demonstrated in the discussin of recursive projections in
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conditional expectations of x given a subset of information.12 Mathematically:

E [E (x |Ω) |ω ] = E (x |ω ) . (5.5.33)

If the conditional expectation of x is formed over time according to the available

information, then equation (5.5.33) is rewritten as:

E [E (xt+1 |It ) |It−1 ] = E (xt+1 |It−1 ) ,

where It−1 ⊂ It for all t.

The second implication of RE is that the expectational errors are uncorrelated

with any information available at time t: any information available to agents to

form expectations at time t does not systematically generate forecast errors. To

demonstrate this result under RE, consider any information, wt, where wt ∈ It :

E
[(
pt+1 − pet+1

)
wt
]

= E [(pt+1 − E (pt+1 |It ))wt]

= E (pt+1wt)− E [E (pt+1 |It )wt]

= E (pt+1wt)− E (pt+1wt) = 0,

where E [E (pt+1 |It )wt] = E [E (wtpt+1 |It )] = E (pt+1wt) and can be shown using

the law of iterated expectations.

Solving Rational Expectations Models

The solution procedures for RE models require a di�erent approach.13 RE models

do not rely merely on a mathematical expectation, which is a summary measure

(expected value). Rather, RE models are based on conditional expectations, which

is a mathematical expectation with a modi�ed probability distribution (�information

set�). Solution procedures involve �closing the model� where unknown variables (i.e.,

expectations) are expressed in terms of other �known� variables. The method of

undetermined coe�cients is a particular solution process that closes a model, and

the minimum state variable (MSV) solution is the simplest solution when using the

method of undetermined coe�cients.

Chapter 4, Appendix, Section 4.5.2.
12See Wooldridge (2008), Appendix B for an introductory discussion of conditional expectations.
13See Enders (2009), Chapter 1 for an introduction to these tools.
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Application 1: A Simple Cobweb Model

The solution(s) for RE models include a REE. The REE imposes a consistency

condition that an agent's choice is a best response to the choices made by others

(Evans and Honkapohja 2001: 11). A simple way to demonstrate an REE is to use

the cobweb model presented in equation (5.5.10). This particular equation shows

that the movements of the price level at time t, (i.e., pt) depend on the RE of the

price level form at t − 1, (pet = E (pt|It−1)) , and a composite stochastic error term,

et:

pt = a+ bE (pt|It−1) + et, (5.5.34)

where a = α−γ
β
, b = −λ

β
< 0, and et =

εdt−εst
β
. Agents �know� the model when they

form their conditional expectations so their expectations can be written as:

E (pt|It−1) = E {[a+ bE (pt|It−1) + et] |It−1}

= E (a|It−1) + E {[bE (pt|It−1)] |It−1}+ E (et|It−1)

= a+ bE [E (pt|It−1) |It−1]

= a+ bE (pt|It−1) , (5.5.35)

where E (a|It−1) = a, E [E (pt|It−1) |It−1] = E (pt|It−1) , and E (et|It−1) = 0.14

Following equation (5.5.35), the right-hand-side expression of E (pt|It−1) is moved

to the left hand side of the equation:

(1− b)E (pt|It−1) = a,

and E (pt|It−1) is equal to:

E (pt|It−1) =
a

1− b
. (5.5.36)

Equation (5.5.36) shows that agents form their conditional expectations of pt using

the structural parameters a and b. Inserting equation (5.5.36) into equation (5.5.34)

14These identities are based on the following. Since agents know the structure of the model,
that is, the parameters of a and b, the existing information set would not a�ect the parameter
values. Therefore, E (a|It−1) = a. We can show, using the law of iterated expectations, that
E [E (pt|It−1) |It−1] = E (pt|It−1) . Intuitively, if an agent forms an expectation of a conditional
expectation (based on the same information set), the conditional expectation does not change since
there is no added information. Lastly, the conditional expectational of a stochastic error term is
zero, (E (et|It−1) = 0) , since an agent is unable to �forecast� white noise, et, given past information
It−1.



CHAPTER 5. STRATEGISTS AND PARTY IDENTIFICATION 88

yields:

pt = a+ bE (pt|It−1) + et

= a+ b

[
a

1− b

]
+ et

=
a (1− b) + ab

1− b
+ et

pREt =
a

1− b
+ et. (5.5.37)

Equation (5.5.37) is the REE and shows the movements of the price level over time

given the RE in equation (5.5.36).

Furthermore, equations (5.5.36) and (5.5.37) also suggest the agents have made

an optimal forecast in the model since the expectational error is simply stochastic

noise:

pt − E (pt|It−1) =

(
a

1− b
+ et

)
− a

1− b
= et. (5.5.38)

The average �expected value� of the expectational e�ects is zero:

E [pt − E (pt|It−1)] = E (et) = 0.

Application 2: A Cobweb Model with Observable Variables

In the previous section, it was demonstrated that the variable of interest � the price

level at time t� depends on its conditional expectations and a composite stochastic

error term in equation (5.5.34). Assuming there are other observable variable(s),

wt−1, in�uencing the quantity supplied in equation (5.5.9):

qst = γ + λpet + δwt−1 + εst . (5.5.39)

For convenience Et−1 is used as an expectation operator to represent the conditional

expectations given information available at time t− 1. The conditional expectations

of price level at time t given the information available at time t− 1 is written as:

Et−1pt = E (pt|It−1) . (5.5.40)

In general, the conditional expectations of pt given the information available at t− j
can be written as:

Et−jpt = E (pt|It−j) ,
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for all j.

To solve for the reduced form of the price level, both equations (5.5.39) and (5.5.8)

are set equal to each other:

pt =

[
α− γ
β

]
−
(
λ

β

)
pet −

(
δ

β

)
wt−1 +

[
εdt − εst
β

,

]
or:

pt = a+ bpet + dwt−1 + e′t,

where a = α−γ
β
, b = −λ

β
, d = − δ

β
, and e′t =

εdt−εst
β
. The RE price at time t is written

as:

pet = E (pt|It−1) = Et−1pt.

Therefore, the revised model of the price level is:

pt = a+ bEt−1pt + dwt−1 + e′t. (5.5.41)

Equation (5.5.41) is very similar to equation (5.5.34). But, equation (5.5.41)

shows the price level, pt, now depends on an extra observable variable, wt−1. To

solve for the REE, conditional expectations of both sides in equation (5.5.41) are

taken:

Et−1pt = Et−1 (a+ bEt−1pt + dwt−1 + e′t)

= Et−1a+ Et−1 (bEt−1pt) + Et−1 (dwt−1) + Et−1e
′
t

= Et−1a+ bEt−1 (Et−1pt) + dEt−1wt−1 + Et−1e
′
t. (5.5.42)

Note Et−1a = a, Et−1 (Et−1pt) = Et−1pt, Et−1wt−1 = wt−1, and Et−1e
′
t = 0, thus we

have:

Et−1pt = a+ bEt−1pt + dwt−1

Et−1pt =
a

1− b
+

d

1− b
wt−1. (5.5.43)

Now substituting equation (5.5.43) into equation (5.5.41) and solving for the REE:

pt = a+ b

(
a

1− b
+

d

1− b
wt−1

)
+ dwt−1 + e′t

pREt =
a

1− b
+

d

1− b
wt−1 + e′t. (5.5.44)
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Equation (5.5.44) is the REE where the price level depends on a constant term, an

observable variable, wt−1, and a composite stochastic error term, e′t.

Application 3: The Cagan Hyperin�ation Model

A well-known model, with implications for RE, is the Cagan Hyperin�ation model

(Cagan 1956) that describes the fundamental relation between the aggregate price

level and the money supply. To begin, assume the quantity of real money demanded

(mt − pt)d depends on the expected change in the price level:

(mt − pt)d = α− β (Etpt+1 − pt) + εt,

where α, β > 0. Assume also the quantity of real money supplied (mt − pt)s is deter-
mined by policymakers:

(mt − pt)s = mt − pt,

where mt and pt are the log levels of money stock and price, respectively, Etpt+1 is

the conditional expectations of pt+1 formed at t, and εt is a stochastic money demand

shock. The quantity of money demanded is set with the quantity of money supplied

to determine price level dynamics. The reduced form is:

pt = a+ bEtpt+1 + dmt + et, (5.5.45)

where a = − a
1+b

, b = b

1+b
, d = 1

1+b
, and et = − εt

1+β
.

The Cagan Model with a Constant Policy or Treatment

To make the model as simple as possible the �treatment� is assumed to be constant.

In the Cagan model, the �treatment� or �policy� are monetary policy rules. For

example, assume the treatment or policy, in this case assume the money stock mt,

does not change over time (i.e., mt = m̄). This implies policymakers decide to �x the

money stock level in the economy. Equation (5.5.45) is rewritten as:

pt = a′ + bEtpt+1 + et, (5.5.46)

where a′ = a+ dm̄, and et = − εt
1+β

.

The method of undetermined coe�cients is used to solve for the model (5.5.46).

From equation (5.5.46), the price level depends only on a constant term, its expecta-

tions, and a stochastic error term. We conjecture the RE solution is in the following
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form:

pt = Π + et, (5.5.47)

where Π is an unknown coe�cient. Equation (5.5.47) is extended one period forward

and conditional expectations for time t are taken:

Etpt+1 = Et (Π + et+1)

= EtΠ + Etet+1

= Π, (5.5.48)

where Ete
′
t+1 = 0. Substituting equation (5.5.48) into equation (5.5.46):

pt = a′ + bEtpt+1 + et

= a′ + bΠ + et. (5.5.49)

In equation (5.5.49), we see the actual law of motion (ALM) of pt depends only on a

constant term, a′+ bΠ, and a stochastic term, et, when RE is formed. By comparing

equations (5.5.47) and (5.5.49), the result is:

[From Equation (5.5.47)] Π = a′ + bΠ [From Equation (5.5.49)]. (5.5.50)

It is straight-forward to solve the unknown parameter Π from (5.5.50):

Π =
a′

1− b
. (5.5.51)

Equation (5.5.51) is put back in equation (5.5.48):

Etpt+1 =
a′

1− b
. (5.5.52)

Equation (5.5.52) is the RE agents form. Inserting (5.5.52) into (5.5.46), to get the

dynamics of the price level:

pt = a′ + bEtpt+1 + et

= a′ + b

[
a′

1− b

]
+ et

pREt =
a′

1− b
+ et. (5.5.53)



CHAPTER 5. STRATEGISTS AND PARTY IDENTIFICATION 92

The Cagan Model with an Autoregressive Policy or Treatment

We can also have alternative treatment regimes. Assume the movement of the money

supply follows a �rst-order autoregressive (AR(1)) policy rule:

mt = λ+ γmt−1 + ξt, (5.5.54)

where ξt is a stochastic factor. Substituting equation (5.5.54) into equation (5.5.45)

to get the reduced form for the price level:

pt = a′′ + bEtpt+1 + hmt−1 + ut + et, (5.5.55)

and: a′′ = λ−α
1+β

, b = β
1+β

, h = γ
1+β

, ut = ξt
1+β

, and et = − εt
1+β

.

Applying the method of undetermined coe�cient coe�cients, based on equation

(5.5.55), our conjecture for the RE solution is:

pt = Π0 + Π1mt−1 + Π2ut + Π3et. (5.5.56)

Using equation (5.5.56), the equation is moved one period forward and then expec-

tations for t are taken:

Etpt+1 = Et (Π0 + Π1mt + Π2ut+1 + Π3et+1)

= EtΠ0 + Π1Etmt + Π2Etut+1 + Π3Etet+1

= Π0 + Π1Etmt

= Π0 + Π1mt, (5.5.57)

where Etmt = mt, and Etut+1 = Etet+1 = 0. Substituting equation (5.5.54) into

equation (5.5.57):

Etpt+1 = Π0 + Π1 (λ+ γmt−1 + ξt)

= Π0 + Π1λ+ Π1γmt−1 + Π1ξt. (5.5.58)
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Inserting equation (5.5.58) into equation (5.5.55):

pt = a′′ + b (Π0 + Π1λ+ Π1γmt−1 + Π1ξt) + hmt−1 + ut + et

= (a′′ + bΠ0 + bλΠ1) + (bγΠ1 + h)mt−1 + bΠ1ξt + ut + et

= (a′′ + bΠ0 + bλΠ1) + (bγΠ1 + h)mt−1 + bΠ1 [(1 + β)ut] + ut + et

= (a′′ + bΠ0 + bλΠ1) + (bγΠ1 + h)mt−1 + [b (1 + β) Π1 + 1]ut + et,(5.5.59)

where ut = ξt
1+β

, and now ξt = (1 + β)ut. According to equations (5.5.56) and

(5.5.59), these two equations are identical when:

Π0 = a′′ + bΠ0 + bλΠ1, (5.5.60)

Π1 = bγΠ1 + h, (5.5.61)

Π2 = b (1 + β) Π1 + 1, (5.5.62)

Π3 = 1. (5.5.63)

From conditions (5.5.61)-(5.5.63), the unknown coe�cients can be solved:

Π0 =
a′′ + bλΠ1

1− b
=
a′′ (1− bγ) + bhλ

(1− bγ) (1− b)
, (5.5.64)

Π1 =
h

1− bγ
, (5.5.65)

Π2 = b (1 + β) Π1 + 1 =
bh (1 + β)

1− bγ
+ 1, (5.5.66)

Π3 = 1. (5.5.67)

Substituting solutions (5.5.64)-(5.5.67) into equation (5.5.56), the RE solution is

obtained:

pREt =
a′′ (1− bγ) + bhλ

(1− bγ) (1− b)
+

h

1− bγ
mt−1 +

[
bh (1 + β)

1− bγ
+ 1

]
ut + et. (5.5.68)

Application 4: Models with Multiple Expectations

In this application a RE model is introduced with two rational expectations for-

mulations. An example is Sargent and Wallace's (1975) �ad hoc� model consisting

of an aggregate supply equation, an IS equation and an LM equation. A general

reduced-form model is:

yt = a+ bEt−1yt + dEt−1yt+1 + et. (5.5.69)
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Equation (5.5.69) implies agents' expectations of yt and yt+1 are formed at time t−1.

Using the simplest REE:

yt = Π0 + Π1et. (5.5.70)

The expression of equation (5.5.70) one period forward is:

yt+1 = Π0 + Π1et+1. (5.5.71)

Taking expectations of equations (5.5.70) and (5.5.71) at time t− 1, respectively:

Et−1yt = Π0, (5.5.72)

and:

Et−1yt+1 = Π0. (5.5.73)

Substituting equations (5.5.72) and (5.5.73) into equation (5.5.69):

yt = a+ bΠ0 + dΠ0 + et. (5.5.74)

Solving for Π0:

Π0 =
a

1− b− d
.

From equation (5.5.74), we see that:

Π1 = 1.

Therefore, the REE is:

yREt =
a

1− b− d
+ et. (5.5.75)

Equation (5.5.75) is also called the minimum state variable (MSV) solution or �fun-

damental� solution (McCallum 1983). This is a linear solution that depends on a

minimal set of variables. In this example, the REE of yt depends only on an inter-

cept, a
1−b−d , and a stochastic error term (et) . Note, a variation of this procedure is

applied in this chapter.

Another possible solution for model (5.5.69) is an AR(1) solution. We conjecture

the AR(1) solution:

yt = Π0 + Π1yt−1 + Π2et. (5.5.76)
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The expectations of yt and yt+1 formed at t− 1 are, respectively:

Et−1yt = Π0 + Π1yt−1, (5.5.77)

and:

Et−1yt+1 = Π0 + Π1Et−1yt

= Π0 + Π1 (Π0 + Π1yt−1)

= Π0 + Π0Π1 + Π2
1yt−1. (5.5.78)

Substituting equations (5.5.77) and (5.5.78) into equation (5.5.69):

yt = a+ b (Π0 + Π1yt−1) + d
(
Π0 + Π0Π1 + Π2

1yt−1

)
+ et

= (a+ bΠ0 + dΠ0 + dΠ0Π1) +
(
bΠ1 + dΠ2

1

)
yt−1 + et. (5.5.79)

Using equations (5.5.76) and (5.5.79), Π0, Π1, and Π2 can be solved:

Π0 = −a
d
,

Π1 =
1− b
d

,

and:

Π2 = 1.

Therefore, the AR(1) REE is:

yREt = −a
d

+
1− b
d

yt−1 + et. (5.5.80)

McCallum (1983) also terms this AR(1) REE a �bubble� solution since it involves

the concept of a �self-ful�lling prophecy.� The reason is equation (5.5.75) can funda-

mentally determine the dynamic behavior of yt, but if agents �believe� and use yt−1

to form expectations, then the RE solution becomes equation (5.5.80) and a self-

ful�lling prophecy. McCallum (1983) argues the MSV solution � not necessarily the

AR(1) REE � should be the solution of interest unless an alternative assumption is

made to focus on the bubble solution in the model.15

15A more general REE for this model can be derived. The general solution is:

yREt = −a
d

+
1− b
d

yt−1 + et + het−1 + kut−1, (5.5.81)



CHAPTER 5. STRATEGISTS AND PARTY IDENTIFICATION 96

where h, k are arbitrary values of coe�cients, and ut is an extra stochastic term (i.e., a sunspot vari-
able) where Et−1ut−1 = 0. This general solution in equation (5.5.81) is also called the ARMA(1,1)
sunspot solution for model (5.5.69).



Chapter 6

Macro Policy

Post World War II economies have experienced various regime shifts in macroeco-

nomic policy. In addition, this has resulted in a research emphasis on overall mone-

tary policy e�ectiveness (See Bernanke et. al., 1999 and Taylor 1999). One particular

line of research has focused on the use of interest rate rules in new Keynesian models

(See Clarida, Gali, and Gertler 2000). Recently, Granato and Wong (2006) used

a model with new Keynesian properties for determining the relation between in�a-

tion stabilizing policy, associated with in�ation targeting, in�ation persistence and

volatility, and business cycle �uctuations.

The EITM linkage is the relation between the behavioral concepts � expectations

and learning � and the applied statistical concept � persistence. Substantively

speaking, the model and test show implementation (and shifts) in the aggressive-

ness of maintaining an in�ation target a�ects in�ation persistence. Consequently,

the empirical tools for this example require a basic understanding of autoregressive

processes. These tools have been presented earlier (Chapter 5). The formal tools

include an extended presentation of tools from Chapter 4 and Chapter 5 (i.e., RE

and linear of di�erence equations (variations on the minimum state variable solu-

tion procedure)) in addition to the components of adaptive learning. These adaptive

learning components include RE modeling, an understanding of recursive stochastic

algorithms, and relevant stability conditions.

97
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6.1 Step 1: Relating Expectations, Learning, and

Persistence

The model's intuition is as follows: monetary policy in�uences in�ation expectations

by encouraging the public to substitute an in�ation target for past in�ation. The

testable prediction is a negative relation between periods of aggressive in�ation-

stabilizing policy and in�ation persistence.1 The model is a small structural model of

macroeconomic outcomes and policy in the Cowles Commission tradition, but it also

includes behavioral analogues for expectations and learning (with a unique and stable

REE (Evans and Honkapohja 2001)). Under the REE, aggressive implementation

of an in�ation target guides agents to the stable equilibrium and thereby reduces

in�ation persistence.2

However, in this chapter, Granato and Wong do not impose RE. Rather they

leave the possibility open that an REE can be reached via adaptive learning. Un-

der adaptive learning expectations are formed by extrapolating from the historical

data. One of the key di�erences between the assumption of RE and that of adaptive

learning concerns whether the agent uses full information for forecasting.

Unlike RE � which assumes agents exhaust all possible information for forecast-

ing � adaptive learning assumes agents choose only to use cost-e�ective information

in a presumably known econometric model for forecasting.3 Over time, by updating

the data and running the same econometric model repeatedly, the agent is expected

to learn and obtain the REE. The ability to reach the REE is formalized via stability

conditions. These conditions are important because they have direct implications for

how, and if, agents learn from policymakers. Adaptive learning models make use of

what are called E-stability conditions (See the Appendix, Section 6.5.1).

1Aggressive in�ation-stabilizing policy is de�ned as one that includes a willingness to respond
forcefully to deviations from a prespeci�ed implicit or explicit in�ation target.

2Adaptive learning has gained popularity recently in in�ation persistence research (See Milani
(2007) as a representative study).

3Or, in more technical terms, adaptive learning is used so that agents update parameters of a
forecasting rule (a perceived law of motion (PLM)) � associated with the stochastic process of the
variable in question � to learn an REE. This process requires a condition establishing convergence
to the REE � the E-stability condition. The E-stability condition determines the stability of the
equilibrium in which the perceived law of motion (PLM) parameters adjust to the implied actual
law of motion (ALM) parameters. See Evans and Honkapohja (2001) for details.
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6.2 Step 2: Analogues for Expectations, Learning,

and Persistence

The model is based on a two-period contract. For simplicity, prices re�ect a unitary

markup over wages. The price at time t, pt, is expressed as the average of the current

(xt) and the lagged (xt−1) contract wage:4

pt =
1

2
(xt + xt−1) , (6.2.1)

where pt is the logarithm of the price level, and xt is the logarithm of the wage level

at period t.

Additionaly, agents are concerned with their real wages over the lifetime of the

contract:

xt − pt =
1

2
[xt−1 − pt−1 + Et (xt+1 − pt+1)] + θzt, (6.2.2)

where xt−pt represents the real wage rate at time t, Et (xt+1 − pt+1) is the expectation

of the future real wage level at time t + 1 formed at time t, and zt = yt − ynt is the

excess demand for labor at time t.

Next, the in�ation rate (πt) is de�ned as the di�erence between the current and

lagged price level (pt − pt−1). With this de�nition, substituting equation (6.2.2) into

equation (6.2.1) obtains:

πt =
1

2
(πt−1 + Etπt+1) + θzt + u1t, (6.2.3)

where Etπt+1 is the expected in�ation rate over the next period and u1t is iid
(
0, σ2

u1

)
.

Equation (6.2.3) captures the main characteristic of in�ation persistence. Since

agents make plans about their real wages over both past and future periods, the

lagged price level (pt−1) is taken into consideration as they adjust (negotiate) their

real wage at time t. This model feature allows the in�ation rate to depend on both

the expected in�ation rate as well as past in�ation.

Letting equation (6.2.4) represent a standard IS curve: the quantity demanded

on output relative to natural output (zt) is negatively associated with the changes

in real interest rates:

zt = −ϕ (it − Etπt+1 − r∗) + u2t, (6.2.4)

where it is nominal interest rate, r
∗ is the target real interest rate, u2t is iid

(
0, σ2

u2

)
,

4See Wang and Wong (2005) for the details of the general theoretical framework.



CHAPTER 6. MACRO POLICY 100

and ϕ > 0.

Assume policymakers use an interest rate rule in linking policy and outcomes �

the Taylor rule (Taylor 1993) � when conducting monetary policy:

it = πt + αyzt + απ (πt − π∗) + r∗. (6.2.5)

Positive values of απ and αy indicate a willingness to raise (lower) nominal interest

rates in response to the positive (negative) deviations from either the target in�ation

rate (πt − π∗), the output gap (zt), or both. An aggressive in�ation-stabilizing policy

is consistent with απ> 0.

The equilibrium in�ation rate can be found by solving for the reduced form of

the system. Substitute equation (6.2.5) into equation (6.2.4) to solve for zt and then

put that result into equation (6.2.3). If we solve this expression for πt the result is:

πt = Γ0 + Γ1πt−1 + Γ2Etπt+1 + ξt, (6.2.6)

where:

Γ0 = (θϕαππ
∗) Φ−1,

Γ1 = (1 + ϕαy) (2Φ)−1 ,

Γ2 = (1 + ϕαy + 2θϕ) (2Φ)−1 ,

ξt = [θu2t + (1 + ϕαy)u1t] Φ−1,

Φ = 1 + ϕαy + θϕ (1 + απ) .

Equation (6.2.6) shows current in�ation depends on the �rst-order lag of in�ation

and also expected in�ation. When (6.2.6) is �closed,� the MSV solution can be

expressed as an AR(1) process. Thus, the AR(1) process is the empirical analogue

for persistence.

6.3 Step 3: Unifying and Evaluating the Analogues

Solving for the REE ensures methodological uni�cation since this solution involves

merging the behavioral analogue of expectations with the empirical analogue for

persistence. By taking the conditional expectations at time t+ 1 of equation (6.2.6)
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and substituting this result into equation (6.3.1) :

πt = A+Bπt−1 + ξ̃t, (6.3.1)

where:

A = Γ0 (1− Γ2B − Γ2)−1 ,

B =
(

1±
√

1− 4Γ1Γ2

)
(2Γ2)−1 ,

ξ̃t ≡ ξt (1− Γ2B)−1 .

Equation (6.3.1) is the MSV solution of in�ation � which depends solely on the

lagged in�ation rate.5

This solution also highlights an important formal modeling and analogue at-

tribute. Using an adaptive learning analogue, one potential confounding factor that

we are alerted to, with important empirical implications, is the nature of the coef-

�cient of lagged in�ation, (B). This parameter is a quadratic where the two values

are de�ned as:

B+ =
1 +
√

1− 4Γ1Γ2

2Γ2

,

B− =
1−
√

1− 4Γ1Γ2

2Γ2

.

Behaviorally, when policymakers adopt an aggressive in�ation-stabilizing policy,

a stationary AR(1) solution can be obtained (i.e., B−) while an explosive AR(1) solu-

tion (i.e., B+) would also be possible. Here adaptive learning serves as an important

selection criteria (i.e., determining stable solutions) where only the stationary solu-

tion (i.e., B−) is attainable and the explosive solution (i.e., B+) is not possible (See

the Appendix, Section 6.5.1 and McCallum 2003).

In other words, if agents learn the equilibrium in an adaptive manner and they

form expectations as new data becomes available over time, B− is the only learnable

(E-stable) equilibrium when policymakers aggressively stabilize in�ation (i.e., απ >

0). The intuition with this selection critierion is that the model is internall consistent:

people can learn the in�ation target and begin to rely less on the past history of

in�ation in making their forecasts.6

5The MSV is solved for in Section 6.5.1.
6The stability condition(s) show that this hypothesis is possible in this model: B− is a unique

stationary solution when απ ≥ 0. The empirical implications of the model � and ex-ante prediction
� as represented in equation (6.3.1) is that an increase in απ reduces persistence under B−.
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Figure 6.3.1: Policy and Persistence

To test the relation between the policy parameter(s) and in�ation persistence

quarterly, U.S. data are used (for the period 1960:I to 2000:III). According to the

model, in�ation persistence should fall signi�cantly under an aggressive in�ation-

stabilizing policy (i.e., απ> 0.). From equation (6.3.1) Granato and Wong estimate

a �rst-order autoregressive process (i.e., AR(1)) of the U.S. in�ation rate. As a con-

sequence of the more aggressive in�ation-stabilizing policy stance during the Volcker-

Greenspan period (August, 1979 through August, 2000), the expectation is that the

in�ation-persistence, parameter (Bt) in the Volcker-Greenspan period to be smaller

(statistically) relative to the pre-Volcker period.

Granato and Wong estimate equation (6.2.5) to contrast the parameter move-

ments in απ and αy.
7 Figure 6.1 provides point estimates of in�ation persistence

(Bt) and policy rule parameters, απ and αy, for a 15-year rolling sample starting in

the �rst quarter of 1960 (1960:I). The results show that after 1980, in�ation persis-

tence starts falling. Figure 6.1 also indicates both απ and αy de-emphasize in�ation

and output stability in approximately 1968. Prior to 1968, policy emphasized out-

put stability (αy > 0). Aggressive in�ation stabilizing policy occurs only after 1980,

when απ > 0.

7See also Granato and Wong (2006: 198-211).
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6.4 Leveraging EITM and Extending the Model

In this example, there is little in the way of microfoundations or the strategic in-

teraction between policymakers and the public. Moreover, the policy rule (6.2.5) is

devoid of any political and social factors. Both the in�ation target variable (π∗) and

the response parameters (απ, αy) could be made endogenous to political and social

factors, including (but not limited to) partisanship, elections, and social interaction

where public information levels are heterogeneous.8

6.5 Appendix

Using the tools in this chapter a transparent and testable relation is established

between expectations, learning, and persistence. The applied statistical analogue for

persistence is located in Section 5.5.1 and will not be repeated. The formal tools

include a presentation of adaptive learning building on tools used in Chapter 4 and

5. The formal tools include a presentation of:

• Extended discussion of di�erence equations (variations on the minimum state

variable solution procedure)

• Adaptive learning (recursive stochastic algorithms and relevant stability con-

ditions).

These tools are subsequently used in various applications for models where RE is

assumed. The discussion ends by showing how adaptive learning, under certain

conditions, translates into showing how an REE can be attained.

6.5.1 Formal Analogues

Equation (6.2.6) can be solved using an MSV solution and a special case of the

method of undetermined coe�cients. Refer to Section 5.5.2. The technique is ex-

tended to RE models with lagged variables.

Equation (6.2.6) is of a particular form. A general RE model with persistence is

presented as follows:

yt = a+ bEtyt+1 + dyt−1 + et, (6.5.1)

8See Granato, Guse, and Wong (2008) for a model with heterogeneous information levels and
adaptive learning.
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where yt is a variable of interest (e.g., the in�ation rate at time t), Etyt+1 is the

rational expectation of yt+1 formed at time t, yt−1 is the lagged dependent variable,

and et is a stochastic term.

Solving for the RE in model (6.5.1), conjecture the solution is:

yt = Π0 + Π1yt−1 + Π2et (6.5.2)

Moving equation (6.5.2) one period forward and then taking expectations at time t:

Etyt+1 = Et (Π0 + Π1yt + Π2et+1)

= Π0 + Π1yt. (6.5.3)

Equation (6.5.3) indicates agents form their expectations of yt+1 based on the current

information yt. Substituting equation (6.5.3) into equation (6.5.1):

yt = a+ b (Π0 + Π1yt) + dyt−1 + et.

After algebraic manipulations:

yt =
a+ bΠ0

1− bΠ1

+
d

1− bΠ1

yt−1 +
1

1− bΠ1

et. (6.5.4)

Comparing equations (6.5.2) and (6.5.4):

Π0 =
a+ bΠ0

1− bΠ1

(6.5.5)

Π1 =
d

1− bΠ1

(6.5.6)

Π2 =
1

1− bΠ1

. (6.5.7)

Next, use (6.5.6):

Π1 =
d

1− bΠ1

to �nd:

bΠ2
1 − Π1 + d = 0. (6.5.8)

Equation (6.5.8) demonstrates there are two possible solutions for the model:

Π1 =
1±
√

1− 4bd

2b
. (6.5.9)
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From equation (6.5.9), we de�ne Π+
1 = 1+

√
1−4bd
2b

, and Π−1 = 1−
√

1−4bd
2b

.

Although there are two possible solutions in the model, it is straight-forward to

�eliminate� one of them. Assuming the lagged dependent variable yt−1 has no e�ect

on yt (i.e., d = 0), then yt−1 should not be in the solution (6.5.2) (Π1 = 0). By

substituting d = 0 into both possible solutions:

Π+
1 =

1 +
√

1− 4bd

2b
=

1 +
√

1− 4b (0)

2b
=

1

b
, (6.5.10)

and:

Π−1 =
1−
√

1− 4bd

2b
=

1−
√

1− 4b (0)

2b
= 0. (6.5.11)

From solutions (6.5.10) and (6.5.11), the conclusion is that Π−1 would be a plausible

solution consistent with the model.

Adaptive Learning

At this point a brief introduction to adaptive learning and expectational stability

is discussed. These two matters were explicated by Evans (1985, 1989) and Evans

and Honkapohja (1995, 2001). For purposes of continuity the example in Section

5.5.2 is further developed using the following a cobweb model (as de�ned in equation

(5.5.41)):

pt = a+ bEt−1pt + dwt−1 + e′t.

Solving for the REE:

pREt =
a

1− b
+

d

1− b
wt−1 + e′t.

As mentioned earlier in Chapter 5, the REE shows that agents rationally forecast

the price level that depends on a constant term, a
1−b , and the observable, wt−1 with

the coe�cient of d
1−b .

Under the assumption of rational expectations, agents are assumed to be very

�smart� and able to make an optimal forecast of pt using wt−1 with an coe�cient

of d
1−b in the forecasting process. Acquiring all available information immediately,

agents are able to form conditional (mathematical) expectations. This is a very

strong assumption. Sargent (1993) points out that agents with RE are even more

sophisticated than the economist who sets up the economic model.

Instead of assuming agents possess rational expectations, we assume agents learn

in an adaptive manner by forming expectations as new data becomes available. Fur-

ther, we analyze the conditions of expectational stability (E-stability) under which
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the parameters in agents' forecasting rules � perceived law of motion (PLM) � are

slowly adjusted to (or mapped to) the parameters in the actual law of motion (which

can contain the REE).

This E-stability condition determines if agents are able to learn (locally) the

correct forecasting rule � the REE. Evans (1989) and Evan and Honkapohja (1992)

show that the mapping from the PLM to the ALM is generally consistent with the

convergence to REE under least squares learning. This correspondence is called

the E-stability principle. Assuming that agents continuously form the forecast of pt

by estimating the following econometric model as new information of wt becomes

available over time we present:

pt = α0 + α1wt−1 + εt. (6.5.12)

Equation 6.5.12 can also be called the PLM. Determining the condition(s) such

that the estimated coe�cients, α0 and α1, can converge to the REE, a
1−b and

d
1−b ,

respectively (when t→∞) is the goal in this regard.

This principle has additional attributes. If the equilibrium is E-stable, then

the RE method may be an appropriate technique for solving long run equilibria.

Moreover, E-stability conditions are important selection criteria in determining stable

solutions when a model has multiple equilibria.

Employing advanced technical terms, Evans (1989) de�nes the E-stability condi-

tion in terms of the ordinary di�erential equation (ODE):

dθ

dτ
= T (θ)− θ, (6.5.13)

where θ is a �nite dimensional parameter speci�ed in the perceived law of motion,

T (θ) is a mapping (so-called T-mapping) from the perceived to the actual law of

motion, and τ denotes �notional� or �arti�cial� time. The REE, θ̄, corresponds to

�xed points of T (θ).

The stability condition of θ̄ is given under the following de�nition:

De�nition 1. θ̄ is expectationally stable (E-stable) if there exists ε > 0 such that

θ (τ) → θ̄ as τ → ∞, for all
∥∥θ0 − θ̄

∥∥ < ε, where θ (τ) is the trajectory that solves

106 subject to the initial condition θ (0) = θ0.

Evans and Honkapohja (2001) show that the notional time concept of expecta-

tional stability is generally consistent with the stability under real-time least squares

learning. Additionally, this correspondence is called the E-stability principle. Evans



CHAPTER 6. MACRO POLICY 107

and Honkapohja (2001) mention that E-stability conditions are often easy to develop,

but the convergence condition of adaptive learning involves a more technical analysis.

Least Squares Learning and Stochastic Recursive Algorithms

To understand the general correspondence between E-stability and adaptive learn-

ing it is necessary to outline the least squares learning technique and appropriate

convergence conditions9 (See Bray (1982), Bray and Savin (1986), and Marcet and

Sargent (1989a, 1989b)). Assuming that agents use recursive least squares (RLS) for

updating their expectations each period up to the period t− 1 :

yet = ψ′t−1xt−1, (6.5.14)

and

ψt = ψt−1 + t−1Rtxt−1

(
yt − ψ′t−1xt−1

)
, (6.5.15)

Rt = Rt−1 + t−1
(
xt−1x

′
t−1 −Rt−1

)
. (6.5.16)

where xt and y
e
t are m× 1 vectors of independent and forecast dependent variables,

respectively, ψt is a 1 × m coe�cient vector updated by the system (6.5.15) and

(6.5.16), Rt denotes the moment matrix for xt. Equation (6.5.14) represents agents'

PLM generating a corresponding ALM for yt :

yt = T (ψt−1)′ xt−1 + vt, (6.5.17)

where vt ∼ iid (0, σ2
v) . Substitute equation (6.5.17) into (6.5.15) , gives the stochastic

recursive system:

ψt = ψt−1 + t−1Rtxt−1

(
x′t−1

(
T (ψt−1)− ψ′t−1

)
+ vt

)
, (6.5.18)

Rt = Rt−1 + t−1
(
xt−1x

′
t−1 −Rt−1

)
. (6.5.19)

The system (6.5.18) and (6.5.19) can also be formed as a standard stochastic

recursive algorithm (SRA) determining the asymptotic stability for linear regression

models:

θt = θt−1 + γtQ (t, θt−1, Xt) ,

where θ′t = (vec (ψt) , vec (Rt+1)) , Xt = (xt, xt−1, vt) and γt = t−1. This SRA relates

9See Evans and Honkapohja (2001) for further mathematical details.
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to the ODE:
dθ

dτ
= h (θ (τ)) , (6.5.20)

where the limit of h (θ) exists as:

h (θ) = lim
t→∞

EQ (t, θ,Xt) ,

and E represents the expectation of Q (·) with the �xed value of θ.

Following the set-up of the SRA, θ̄ is an equilibrium point if h (θ) = 0 in equa-

tion (6.5.20). This result provides a standard mathematical de�nition of asymptotic

stability for the di�erential equation:

De�nition 2. θ̄ is locally stable if for every ε > 0 there exists δ > 0 such that

|θ (t) − θ̄| < ε ∀ |θ (0) − θ̄| < δ. θ̄ is said to be locally asymptotically stable if θ̄ is

stable, and that θ (τ)→ θ̄ ∀ θ (0) is somewhere in the neighborhood of θ̄.

We now show the local stability condition of θ̄ by computing the Jacobian matrix

Dh
(
θ̄
)
and using the following lemma. This lemma is generally consistent with the

the E-stability condition:

Lemma 3. If all eigenvalues of Dh
(
θ̄
)
have negative real parts, then θ̄ is a locally

stable equilibrium point of dθ
dτ

= h(θ). If some eigenvalues of Dh
(
θ̄
)
have a positive

real part, then θ̄ is not a locally stable equilibrium point of dθ
dτ

= h (θ) .

Application: Deriving Expectational Stability (or E-Stability) Conditions

With this background we derive the E-stability condition for the cobweb model in

equation (5.5.41):

pt = a+ bEt−1pt + dwt−1 + e′t. (6.5.21)

Assuming that agents do not know the REE while they are able to update their

forecasts (the parameters) over time. The PLM is:

pt = α0 + α1wt−1 + εt. (6.5.22)

Therefore, the forecasts of pt generated by the agents based on the PLM at time t−1

is:

Et−1pt = α0 + α1wt−1.
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As a result, the actual price pt will be a�ected by agents' forecasts in this case:

pt = a+ bEt−1pt + dwt−1 + e′t

= a+ b (α0 + α1wt−1) + dwt−1 + e′t

= (a+ bα0) + (d+ bα1)wt−1 + e′t. (6.5.23)

Equation (6.5.23) is the implied ALM showing that the parameters in the model

are adjusted given the parameters from the PLM. According to Evans (1989) and

Evans and Honkapohja (2001), the E-stability condition determines the stability of

the equilibrium in which the PLM parameters θ = [α0, α1] adjust to the implied

ALM parameters [a+ bα0, d+ bα1]. This is written as the following ODE:

dθ

dτ
= T (θ)− θ,

where τ is a notional time period, and T (θ) is a mapping (T-mapping) of the PLM

parameters θ, that is, T (θ) = [a+ bα0, d+ bα1] . The ODE can also be rewritten as

follows:

d

dτ

(
α0

α1

)
= T

(
α0

α1

)
−

(
α0

α1

)

=

(
a+ bα0

d+ bα1

)
−

(
α0

α1

)
. (6.5.24)

As a result, the REE corresponds to the �xed points of T (θ) . To determine the

E-stability condition, the associated ODE in equation (6.5.24) can be viewed as the

dynamic process of the forecasting parameters:

α̇0 =
dα0

dτ
= (a+ bα0)− α0, and (6.5.25)

α̇1 =
dα1

dτ
= (d+ bα1)− α1. (6.5.26)

According to equations (6.5.25) and (6.5.26), the E-stability condition is shown as

b < 1, implying that agents are able to learn the REE over time only if b < 1 is

satis�ed.

Understanding the result mathematically, the REE is attainable when the dy-

namic process for α0 and α1 are in steady steady, such that α̇0 = 0 and α̇1 = 0. In
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Figure 6.5.1: E-stability versus E-unstability

equations (6.5.25) and (6.5.26), we simplify them as follows:

α̇0 = a+ (b− 1)α0, and (6.5.27)

α̇1 = d+ (b− 1)α1. (6.5.28)

An explanation of the E-stability condition is illustrated by the values of α̇0 against

α0. This is based on the ODE function (6.5.25) when b < 1 and b > 1. If b < 1, the

slope of equation (6.5.27) is negative and can be presented in the left panel of Figure

(6.5.1). However, the function is positively sloped if b > 1 (the right panel).

On the left panel of Figure (6.5.1), with b < 1, any value of α0,t at time t which

is less than its REE � α0,t < αREE0 � gives a positive value of α̇0 � α̇0 = dα0

dτ
> 0.

Consequently, α0,t increases over time and approaches αREE0 for t→∞. Similarly, if
α0,t is initially larger than αREE0 , the condition, α̇0 < 0, indicates α0,t decreases over

time but also approaches αREE0 for t→∞.

However, considering the case where b > 1 (the right panel of Figure (6.5.1)

any initial value of α0,t less than αREE0 , then under the condition, α̇0 < 0, means

α0,t decreases over time and diverges from its REE. Based on the same reasoning, if

α0,t > αREE0 for any t, then α̇0 > 0 indicates α0 increases over time and moves away

from its REE.

The same procedure can be applied to show that α1,t converges (in equation

6.5.28) to αREE1 only if b < 1 : the PLM parameters converge to the REE only

under the condition of b < 1. The conclusion therefore is b < 1 satis�es the E-

stability condition and b > 1 is the E-unstability condition. Consequently, this

result demonstrates that, if b < 1 is satis�ed, agents will obtain the REE if they

recursively update their forecasts by the adaptive learning mechanism.

These properties are reinforced further with numeric simulations for the model

(6.5.21) � (6.5.23). We assign the values a = 2, d = 3, and σw = 1 and σe′ = 1 in
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Figure 6.5.2: Simulation with E-stable Condition (b < 1)

Figure 6.5.3: Simulation with E-unstable Condition (b > 1)

the �rst simulation. By assigning b = 0.5, we can solve for the REE: αREE0 = 4 and

αREE1 = 6. Since b = 0.5 is less than 1, the model is E-stable and agents are able to

learn the REE in the long run. The result is presented in Figure 6.5.2. However, if

b = 1.5 is assigned (because it is larger than 1) the divergence becomes clear. The

REE can be solved for, αREE0 = −4 and αREE1 = −6, but under this condition for b,

the REE is not learnable since the parameters diverge in the long run (See Figure

6.5.3).



Chapter 7

Information Di�usion

This chapter focuses on information di�usion � the transfer of information from

one group to another. It should come as no surprise that information di�usion

is an important research area for social scientists. While political scientists have

been working on information di�usion processes for many decades (See Lazarsfeld,

Berelson, and Gaudet 1944), there is also a very robust tradition in economics (See

Chamley 2004). Financial economists, for example, have studied explanations for

herding behavior, in which rational investors demonstrate some degree of behav-

ioral convergence (Devenow and Welch, 1996). Most recently studies in monetary

economics are exploring how information di�usion in�uences economic forecasting

behavior. Information di�usion, as it pertains to the formation and distribution of

expectations, speci�cally over economic variables such as in�ation, has also been

examined. Granato and Krause (2000), for example, investigate the possibility of

in�ation expectations di�usion within the electorate. Using educational di�erences

as a proxy for information heterogeneity, they �nd the forecasts of the more educated

in�uence the less educated group's forecasts and that the relation is asymmetric.

We are using an example based on Granato, Guse, and Wong (2008) which is

extended by Granato, Lo, and Wong (2011) to the di�usion of in�ation expecta-

tions. This EITM framework is used to examine the consequences of the asymmetric

di�usion of expectations. In the spirit of a traditional two-step �ow model of com-

munication, less-informed agents learn the expectations of more-informed agents. An

important �nding is that when there is misinterpretation in the information acquisi-

tion process, a boomerang e�ect exists � the less-informed agents' forecasts confound

those of more-informed agents.1

1Research also suggests that agents do not interpret public information in an identical manner
(See Kandel and Zilberfarb 1999).

112
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The EITM linkage for this example involves the uni�cation of the behavioral

concepts of social interaction, expectations, and learning, with the empirical concepts

of simultaneity and prediction error. While expectations are again used, it is the

social interaction that is crucial in this chapter.2 Speci�ally, the social interaction

involves information di�usion from better informed to less informed agents. The

formal tools used � expectations and learning � are found in Chapters 4 and 5

and are not put in this chapter's Appendix. The empirical tools include an analogue

for predicion error � de�ned as the mean square error � and is contained in the

chapter's text. However, the time series tools used in this chapter dealing with

simultaneity (endogeneity) and stationarity are contained in the Appendix.

7.1 Step 1: Relating Social Interaction, Expecta-

tions, and Learning to Simultaneity and Predic-

tion Error

Information di�usion is characterized as when less informed agents can receive in-

formation from more informed agents for the purpose of enhancing their � the less

informed agents � forecast accuracy. Further, the relation is not simply one group

informing another. Instead, the relation between less- and more-informed agents

� social interaction � involves expectations and learning. When these behavioral

traits are linked with prediction error (forecast accuracy), the result is a set of dis-

tinct predictions based on these behavioral concepts and new equilibrium predictions

about behavior. The EITM framework allows for an investigation of a boomerang

e�ect, which is de�ned as a situation where the inaccurate forecasts of a less-informed

group confound a more-informed group's forecasts.

2Note that under EITM, the empirical concept of simultaneity is used as a modeling and testing
attribute and not a statistical nuisance. The simultaneity bias is explicitly modeled via the use of
reduced forms and tested.
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7.2 Step 2: Analogues for Social Interaction, Expec-

tations, Learning, Simultaneity, and Prediction

Error

In developing a formal model of in�ation's behavior, Granato, Lo, and Wong (2011)

link a standard Lucas aggregate supply model (Lucas, 1973) with an aggregate de-

mand function. (Evans and Honkapohja, 2001). The aggregate supply function and

demand function, respectively, are:

yt = ȳ + θ
(
pt − E∗t−1pt

)
+ εt, (7.2.1)

where θ > 0, and:

mt + vt = pt + yt. (7.2.2)

The variables are as follows: pt and yt are the price and output level at time t,

respectively, ȳ is the natural rate of output level, E∗t−1pt is the expectation (may not

be rational) of the price level at time t. mt is the money supply, and vt is a velocity

shock. If agents form expectations rationally, it suggests people use all the available

information to make the best possible forecasts of the economic variables relevant

to them (Lucas 1972). In more technical terms, rational expectations (RE) is an

equilibrium condition where the subjective expectations of some variable of interest

is equivalent to the objective mathematical expectations conditional on all available

information at the time the expectation is formed.3

It is assumed that velocity depends on some exogenous observables, wt−1:

vt = κ+ λwt−1 + εt, (7.2.3)

where λ > 0 and the money supply (mt) is determined by the following policy rule:

mt = m̄+ pt−1 + φwt−1 + ξt, (7.2.4)

where φ > 0, m̄ is a constant money stock, and εt, εt, and ξt are iid stochastic shocks.

Using equations (7.2.1) thru (7.2.4) and de�ning πt = pt − pt−1 and E∗t−1πt =

3Evans and Honkapohja (2001) argue that the assumption of RE is rather strong. They suggest
the assumption can be relaxed by allowing agents to �learn� or update their conditional forecasts
over time to obtain RE in the long run. This is called the adaptive learning approach which will
be discussed later.
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E∗t−1pt − pt−1, gives the in�ation dynamics:

πt = α + βE∗t−1πt + γwt−1 + ηt, (7.2.5)

where:

α = (1 + θ)−1 (κ+ m̄− ȳ) ,

β = θ (1 + θ)−1 ∈ (0, 1) ,

γ = (1 + θ)−1 (φ+ λ) ,

and:

ηt = (1 + θ)−1 (εt + εt + ξt) .

Equation (7.2.5) is a self-referential model where in�ation depends on its expec-

tations
(
E∗t−1πt

)
, exogenous variables (wt−1), and the stochastic shocks (ηt). Since

RE is assumed, the unique rational expectations equilibrium (REE) is:

π = āREE + b̄REEwt−1 + ηt, (7.2.6)

where āREE = α
1−β , and b̄

REE = γ
1−β . From the equilibrium (7.2.6), agents can make

rational forecasts Et−1πt if they have the full information set wt−1 at time t− 1 such

that:

Et−1πt = āREE + b̄REEwt−1. (7.2.7)

A body of research suggests forecast accuracy is associated with education, a

common proxy for information levels (wt−1) (Granato and Krause 2000; Carlson and

Valev 2001). Agents possessing more education have more accurate forecasts. An

extension of this �nding is a second implication relating to information di�usion:

more-informed agent forecasts and expectations (e.g., with higher education levels)

in�uence less-informed agent forecasts and expectations (Granato and Krause 2000).

With these �ndings in mind take equation (7.2.5) and partition the information

set wt−1 into two parts: wt−1 =

(
xt−1

zt−1

)
, where xt−1 is �common� information, and

zt−1 represents the �advanced� information:

πt = α + βE∗t−1πt + γ1xt−1 + γ2zt−1 + ηt, (7.2.8)

where γ = (γ1, γ2) . Following Granato, Guse and Wong (2008) populations are sep-
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arated into two groups of agents. In the spirit of the classic two-step �ow model

(Lazarsfeld, Berelson, and Gaudet 1944), the groups are separated by the amount

of information and interest they possess. Group L signi�es the less-informed group.

These agents are assumed to be less current on political and economic events. Mem-

bers of the second group, Group H, are opinion leaders (e.g., issue publics) who are

generally up-to-date on political and economic events. Opinion leaders are key in any

information di�usion process since they are recognized by the less-informed group as

having more and better information.

It follows that these two groups possess di�erent information sets (xt−1,wt−1).

Group H has the complete information set of wt−1 ≡

(
xt−1

zt−1

)
, while Group L

only obtains the common information set xt−1. The model also assumes there is a

continuum of agents located on the unit interval [0, 1] of which a proportion of, 1−µ,
where µ ∈ [0, 1), are agents in Group H who are more informed when forecasting

in�ation.

Agents are interactive. Group L observes Group H's expectations to make its

forecasts (but not vice versa). However, Group L agents may interpret (or even

misinterpret) Group H's forecasts di�erently or may not be able to obtain the exact

information from the more-informed agents. The next step is to introduce a dis-

tribution of observational errors, et−1, for Group L during the information di�usion

process.4 This gives Group L's forecasting model:

πt = aL + bLxt−1 + cLπ̂t−1 + vt, (7.2.9)

and:

π̂t−1 = E∗H,t−1πt + et−1, (7.2.10)

where et−1 ∼ iid (0, σ2
e) represents the observational errors which are uncorrelated

with vt and wt−1, and π̂t−1 is the observed information that Group L obtains from

Group H, E∗H,t−1πt (See equation (7.2.12)) with observational error (et−1) at time

t − 1. Since Group L obtains the observed information after Group H forms its

4This assumption is supported by Kandel and Zilberfarb (1999). They �nd that people do not
interpret the existing information in an identical way. Using Israeli in�ation forecast data, they
show that the hypothesis of identical-information interpretation is rejected. In other words, less-
informed agents could experience some di�culty in understanding these expectations, and they
may interpret the more-informed agents' information di�erently. It is also intuitively reasonable
to believe agents are not able to obtain the exact information from others. Therefore, Granato,
Lo, and Wong (2011) use a distribution of observational errors, et−1, to indicate the degree of
misinterpretation of others' actions.
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expectations, Group L treats the observed information as a predetermined variable.

The forecasting model for Group H is di�erent since this group possesses the full

information set to forecast in�ation:

πt = aH + b1Hxt−1 + b2Hzt−1 + vt. (7.2.11)

In this model, Group L and Group H do not directly obtain RE. Instead, Group L

and Group H forecast following the process of equations (7.2.9) and (7.2.11), respec-

tively, and have data on the political economic system from periods ti = Ti, ..., t− 1,

where i ∈ {L,H}. The time t−1 information set for the less-informed group, Group

L, is {πi, xi, π̂i}t−1
i=TL

, but the information set for Group H at time t−1 is {πi, wi}t−1
i=TH

.

With analogues for expectations and social interaction established, the analogue

for learning is derived (See Evans and Honkapohja, 2001; Granato, Guse, and Wong

2008). Based on the adaptive learning method, agents attempt to learn the stochas-

tic process by updating their forecasts (expectations) as new information becomes

available. Both groups use (7.2.12) for their perceived law of motion (PLM) when

they forecast the variable of interest (in�ation rate):

E∗i,t−1πt = ϕ′iqi,t−1, (7.2.12)

where i ∈ {L,H}, q′L,t−1 ≡ (1, xt−1, π̂t−1), q′H,t−1 ≡ (1, xt−1, zt−1), ϕ′L ≡ (aL, bL, cL)

and ϕ′H ≡ (aH , b1H , b2H). The in�ation expectations, E∗t−1πt, in the society can be

calculated as the weighted average of the expectations from both groups:

E∗t−1πt = µE∗L,t−1πt + (1− µ)E∗H,t−1πt. (7.2.13)

Using equations (7.2.8) thru (7.2.11) and (7.2.13), results in the actual law of motion

(ALM):

πt = Ωα + Ωxxt−1 + Ωzzt−1 + Ωeet−1 + ηt, (7.2.14)

where:

Ωα = α + βµaL + β (1− µ) aH ,

Ωx = βµbL + [βµcL + β (1− µ)] b1H + γ1,

Ωz = [βµcL + β (1− µ)] b2H + γ2,

and:

Ωe = βµcL.
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Equations (7.2.5), (7.2.12), and (7.2.14) represent a system that now incorporates

adaptive learning. Both Group H and Group L use their PLM's (i.e., equation

(7.2.12)) to update their forecasts of in�ation (E∗i,t−1πt, in equation (7.2.5)) based on

information, qi,t−1.

Evans (1989) and Evans and Honkapohja (1992) show that mapping the PLM

to the ALM is generally consistent with the convergence to REE under least square

learning. Further, assuming that agents have a choice of using one of several forecast-

ing models and that there are equilibrium predictions in these models, Guse (2005,

2006) refers to a resulting stochastic equilibrium as a �mixed expectations equilib-

rium� (MEE).5 Computing the linear projections on equations (7.2.8), (7.2.12), and

(7.2.13), the MEE coe�cients results in the following:6

ϕ̄L =

 āL

b̄L

c̄L

 =


α

1−β (1− c̄L)
γ1

1−β (1− c̄L)
b̄22Hσ

2
z

b̄22Hσ
2
z+(1−βµ)σ2

e

 (7.2.15)

and

ϕ̄H =

 āH

b̄1H

b̄2H

 =


α

1−β
γ1

1−β
γ2

1−β+βµ(1−cL)

 , (7.2.16)

where γ ≡ (γ1, γ2).

The MEE (7.2.15) and (7.2.16) is the equilibrium of the forecasting models for

Group L and Group H, respectively. Recall from (7.2.6) that the REE is āREE = α
1−β

and b̄REE = γ
1−β . Both groups can obtain the REE if they are able to receive the

same complete information. However, because of the process of information di�usion,

Groups L and H fail to obtain the REE.

The observational error et−1 plays a signi�cant role in the model. Whether Group

L uses the observed information from Group H depends on how accurately the less-

informed group understands information (the expectations) from the more-informed

group. The accuracy is represented by the variance of the observational error, σ2
e .

Equation (7.2.15) implies that 0 < c̄L ≤ 1 for β < 1
µ
. If Group L can fully

understand and make use of Group H's expectations (i.e., σ2
e → 0) , then c̄L = 1 (by

5In this model, agents have a choice to be either in Group H or in Group L when they form
their forecasting models.

6To obtain the MEE, one can solve for the orthogonality condition (OC) using ALM (7.2.14)
and PLM (7.2.12). For Group H, the OC is E

(
πt − E∗H,t−1πt

)
(1, xt−1, zt−1) = 0. For Group L, the

OC is: E
(
πt − E∗L,t−1πt

)
(1, xt−1, π̂t−1) = 0.
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solving equations (7.2.15) and (7.2.16) with σ2
e = 0). In addition, c̄L → 0 as σ2

e →∞
and the values of c̄L a�ect āL and b̄L . If c̄L → 0, āL → α

1−β and b̄L → γ1
1−β , and both

āL, b̄L → 0 if c̄L → 1.

In the case of Group H, under the assumption that the covariance between xt

and w2,t is zero, c̄L does not a�ect āH and b̄1H . Both will approach the REE,7(
āH , b̄1H

)
→
(

α
1−β ,

γ1
1−β

)
. However, equation (7.2.16) shows that b̄2H is a�ected by

c̄L, where
∣∣b̄2H

∣∣ ∈ ( |γ2|
1−β(1−µ)

, |γ2|
1−β

)
for β ∈ [0, 1) and

∣∣b̄2H

∣∣ ∈ ( |γ2|
1−β ,

|γ2|
1−β(1−µ)

)
for

β ∈ (−∞, 0). This latter relation is evidence of a boomerang e�ect on expectations :

the observational error of the less-informed group biases the parameter(s) of the

highly informed group's forecasting rule.8

The applied statistical analogue for prediction (forecast) error is the mean square

error (MSE). For the in�ation forecast error the mean square error is represented by

the following formula: :

MSEi ≡ E
(
πt − E∗i,t−1πt

)2
,

for i ∈ {L,H}.

7.3 Step 3: Unifying and Evaluating the Analogues

The formal model demonstrated that Group L places weight on the observed infor-

mation from Group H. Group L makes use of Group H's expectations (i.e., higher c̄L)

as long as Group L does not face large variation in observation error when interpret-

ing Group H's information (i.e., lower σ2
e). Linking the formal and applied statistical

analogues shows how expectations, information di�usion, and learning create testable

dynamics.

To show this, calculate the mean squared error (MSE) for the forecasts of Groups

L and H, respectively:9

MSEL =

[
γ2 (1− c̄L)

1− β + β (1− c̄L)µ

]2

σ2
z + (1− βµ)2 c̄2

Lσ
2
e + σ2

η (7.3.1)

MSEH = (βµc̄L)2 σ2
e + σ2

η (7.3.2)

7If the cov (xt, w2,t) 6= 0, then b̄1H can also be a�ected by the less informed group's forecast
errors.

8See Granato, Guse, and Wong (2008: 358-360) for details.
9For comparison, the MSE's are calculated for situations in which both groups have the same

(full) information set and learn independently. Both groups' MSE's are at a minimum when
MSEL = MSEH = σ2

η.
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where MSEi ≡ E
(
πt − E∗i,t−1πt

)2
for i ∈ {L,H} .

Equation (7.3.1), using di�erent values of σ2
e , depicts the accuracy of the less-

informed group's predictions. If Group L is able to fully understand the expectations

from Group H (i.e., without any observation errors σ2
e = 0), the result is that Group

L obtains the minimum MSE (MSEL = σ2
η). Otherwise, the �nite σ2

e reduces the

less-informed agents' predictive accuracy (where MSEL > σ2
η).

More importantly, due to the information di�usion, Group H fails to obtain the

most accurate forecast. If there is no information di�usion process, then both groups

form their forecasts independently, Group H obtains the minimum forecast error,

MSEH = σ2
η. However, when information di�usion exists, with a �nite σ2

e , Group H

has higher forecast errors: MSEH = (βµc̄L)2 σ2
e + σ2

η > σ2
η in equation (7.3.2). This

result is called the boomerang e�ect on the MSE.10

The results for Group H indicate that only the two limit points of the variance of

the observation errors (σ2
e = 0 or σ2

e →∞) produce the most e�cient outcome (i.e.,

when σ2
e = 0, c̄L = 1). Stated di�erently, Group L uses the expectations from the

highly informed group. This implies that Group L's expectations become exactly the

same as those of Group H, resulting in both groups forecasting e�ciently. However, if

σ2
e →∞, c̄L = 0. In this case, Group L is unable to interpret Group H's expectations

and eventually discards them. Both groups learn independently and the boomerang

e�ect is absent.

Surveyed in�ation expectations from the SRC at the University of Michigan are

used to test the dynamics embedded in (7.2.5). The tests are directed at two things.

First, our theoretical model assumes that information di�usion is asymmetric: the

expectations of Group H in�uence the expectations of Group L. The �rst test serves

as a necessary condition for the second test. The second test examines whether the

boomerang e�ect exists and involves examining whether larger observation errors

made by Group L agents (σ2
e) results in greater inaccuracy in in�ation predictions

by Group H agents (MSEH).11

10See Proposition 4 in Granato, Guse, and Wong (2008: 360-361)
11In�ation expectations surveys are conducted by the SRC at the University of Michigan and the

results are published in the Survey of Consumer Attitudes. Since 1978 the center has conducted
monthly telephone interviews from a sample of at least 500 households randomly selected to rep-
resent all American households, excluding those in Alaska and Hawaii. Each monthly sample is
drawn as an independent cross-section sample of households. Respondents selected in the drawing
are interviewed once and then re-interviewed six months later. This rotating process creates a total
sample made up of 60 percent new respondents and 40 percent prior respondents.
Survey respondents are asked approximately 50 core questions that cover three broad areas of

consumer opinions: personal �nances, business conditions, and buying conditions. The following
questions relate to measuring in�ation expectations:
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Granger causality tests are used to test what variables are exogenous or endoge-

nous. Since there is evidence that the data possess unit roots, �rst di�erences for all

classes of in�ation forecasts are employed. The Akaike information criterion (AIC)

and Lagrange multiplier (LM) test statistics suggesting that the VAR system with lag

order of seven is preferable on the basis of a minimum AIC with no serial correlation

or heteroskedasticity in the residuals.12

Table 7.1 reports results of the Granger causality tests. The null hypotheses

that Group H does not Granger-cause Group L2 is rejected (p-value equals 0.030).

However, Group H does not Granger-cause Group L1 (p-value equals 0.122). Note

too that Group L1 Granger causes Group L2 (p-value equals 0.047). In contrast,

Groups L1 and L2 do not Granger-cause Group H. Another �nding is that Group L2

does not Granger-cause Group L1's forecasts. Overall, the testing results in Table

7.1 clearly indicate that there is an asymmetric information di�usion: the in�ation

forecasts of the more-educated a�ect the less-educated.

To test for the existence of a boomerang e�ect requires a determination of whether

a �positive� relation exists between the size of observation errors of less-informed

agents and the size of forecast inaccuracy of more-informed agents. The size of

observation error (et) is based on its variance (σ2
e), while the forecast (prediction)

accuracy of the more-informed is the size of the mean square error of Group H's

forecasts (MSEH).

Using equations (7.2.9) and (7.2.10), it is possible to construct the following

regression model:

E∗Ljπt = aLj + bLjxt−1 + cLj
(
E∗H,t−1πt + eLj,t−1

)
, (7.3.3)

1. During the next 12 months, do you think that prices in general will go up, or go down, or
stay where they are now?

2. By about what percent do you expect prices to go (up/down), on the average, during the
next 12 months?

If respondents expect that the price level will go up (or down) on question 1, they are asked in the
second question to provide the exact percent the price level will increase (or decrease), otherwise
the second question is coded as zero percent. Then divide the in�ation expectation survey data
into di�erent educational categories. To be consistent with the theory, the respondents with college
or graduate degrees are put in the highly informed group (Group H) and those without a college
degree are categorized as the less-informed group (Group L). Based on the unique characteristics
of the data set, it is possible to to further separate Group L into two distinct levels: (1) high school
diploma or some college (denoted as �L1�); and (2) less than high school or no high school diploma
(denoted as �L2�).

12The unit root test results are based on both the augmented Dickey-Fuller test (1979), and
the Elliott-Rothenberg-Stock test (1996). The results of the unit root tests and of the lag order
selection for the VAR are available from the current authors on request.
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Table 7.1: Granger Causality Test Results: Group H, Group L1, and Group L2

where E∗Lj,t−1πt and E∗H,t−1πt represent the in�ation forecasts of less and more-

informed groups, respectively, j ∈ {1, 2} and xt is the information set for in�ation

forecasts for Group L, which includes the current and lagged federal funds rate, the

current in�ation rate, and oil prices.13 The series, σ2
eLj

, is constructed using a rolling

regression technique in which the regression window of (7.3.3) is set at 12 years and

moved forward every quarter.14

The observation error generated from equation (7.3.3) for the less-informed groups

is:

eLj,t−1 =
E∗Lj,t−1πt − aLj − bLjxt−1 − cLjE∗H,t−1πt

cLj
.

This result follows that the variances of the observation error
(
σ2
eLj ,t

)
for the less-

informed groups is:

σ2
eLj ,t

=

∑t+s
t e2

Lj,t

s− 1
, ∀t

where s represents the number of quarters in rolling windows.

Applying the same rolling regression technique to estimate the mean square error

for Group H:

MSEH,t =

∑t+s
t

(
πt − E∗H,t−1πt

)2

s
, ∀t.

A concern is the long-run (inter-)relation between MSEH and σ2
eLj

and also whether

a larger value of σ2
eLj

causes MSEH to increase. This result would support the

13The data are from the FRED database provided by the Federal Reserve Bank of St. Louis.
1415-year and 10-year rolling regression windows are used in this empirical analysis. However,

results from using di�erent choices of regression windows do not show any substantive or statistical
di�erence, indicating the robustness of empirical �ndings presented in the paper.
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Table 7.2: Unit Root Test Results for MSEH , σ
2
ẽ,L1, and σ

2
ẽ,L2

boomerang e�ect hypothesis. To obtain consistent estimates of the unknown param-

eters entering the system consisting of MSEH , σ
2
eL1

, and σ2
eL2

, �rst characterize the

stochastic properties of these underlying variables.

Table 7.2 presents the augmented Dickey-Fuller (1979) and Elliott-Rothenberg-

Stock (1996) test results. Granato, Lo, and Wong �nd thatMSEH , σ
2
eL1

, and σ2
eL2

all

contain a unit root. With test results indicating that all variables in the system are

non-stationary, the cointegration methodology is useful for exploring the long-run

(inter-)relation among the variables and the existence of a boomerang e�ect.15

7.4 Leveraging EITM and Extending the Model

Granato, Lo, and Wong (2011) use the Survey Research Center (SRC) in�ation

expectations data to test the existence of asymmetric information di�usion and the

boomerang e�ect. The quarterly survey data, divided along di�erent educational

groups, covers 1978 thru 2000. One of the attributes of using a formal model of

social interaction, expectations and learning is the potential of a boomerang e�ect

where more informed agents have the accuracy of their forecasts impaired by their

15Granato, Lo, and Wong (2011) use the Johansen test for this particular task is detailed in the
application section of the Appendix.
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interaction with less informed agents.

Testing for the existence of the boomerang e�ect, Granato, Lo, and Wong use a

cointegration test to estimate the long run relation between the variance of obser-

vational errors from the less educated group and the mean square error of the more

educated group's expectations. A long-run positive relation is found and there is

evidence of a boomerang e�ect.

This model and test may be extended in several ways. Focusing on the boomerang

e�ect several issues are open for examination. The �rst is that the model itself

assumes the less informed agents are merely passive recipients of the information.

There is a point in this model where the variance of the tranmission of the information

can lead the less informed to discard the information. However, this process is not

modeled and there is no estimation of how long it would take the less informed agents

to discard the information.

A second point of examination is adding more information on the characteristics

of various groups and their willingness to cooperate and use information. Jasso (2008)

for example, has shown how various group characteristics can lead to situations where

there is enhanced or reduced cooperation.

A third way of extending the model and test is to use experiments and vary the

information but also the proportions of more informed and less informed agents.

These population proportions, along with alternative types of information (not re-

lated to in�ation expectations), and repeated play would contribute to the robustness

and the circumstances when various information di�usion scenarios contribute to a

boomerang e�ect.

7.5 Appendix

The tools in this chapter are used to create a transparent and testable linkage using

social interaction, expectations, learning, and combining these behavioral concepts

with empirical concepts � simultaneity and prediction error. The formal analogues

for social interaction is mathematical substitution and the analogues for expectations

and learning have been presented in Chapters 4 thru 6 and will not be repeated. The

applied statistical tools used in this chapter that require further background is the

use of advanced time series methods. We then demonstrate the use of these tools in

the empirical application for this chapter.
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7.5.1 Empirical Analogues

The applied statistical tools used in this chapter assist in sorting out issues of simul-

taneity (endogeneity) and causality. A basic tool to determine what variables are

exogenous or endogenous is the Granger causality test (1969). But, Granger causal-

ity tests, while important, can be misleading without an accounting of the behavior

of time series data.

In the early 1990s, research in applied econometrics went through a major revolu-

tion. The revolution was triggered by the fact that a large number of macroeconomic

time series are non-stationary: their means and variances change over time. Stan-

dard estimation methods assume that the means and variances of the variables are

constant and independent of time. Classical estimation methods to estimate relation-

ships with non-stationary variables leads to a spurious regression problem. One way

to �correct� spurious regressions is �rst-di�erencing (i.e., 4yt = yt− yt−1). However,

�rst di�erencing removes long-term relationships. The challenge is how to account

for spurious regressions and not remove vital long-term equilibrium relations.

Cointegration is important in that it o�ers an estimation method that captures

economic notation of a long-run equilibrium without the spurious regression problem.

For example, Johansen stated in 1995 that:

An economic theory is often formulated as a set of behavioural relations or

structural equations between the levels of the variables, possibly allowing

for lags as well. If the variables are I(1), that is, non-stationary with

stationary di�erences, it is convenient to reformulate them in terms of

levels and di�erences, such that if a structural relation is modeled by

a stationary relation then we are led to considering stationary relations

between levels, that is, cointegrating relations (page 5).

Unit root and cointegration together give important implications for the estimation

of a model using time series data. There have been various methods to test for the

presence of unit roots and to estimate the parameters in cointegrating regressions.

For unit-root tests we present:

• the Dickey-Fuller test

• the Augmented Dickey-Fuller test.

The tests for cointegration we include are:

• the Engle-Granger two-step procedure
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• the Johansen (maximum likelihood).

The Granger Causality Test

Implementing single equation Granger Causality tests are straightforward. In the

case of single equation estimation, Freeman (1983) gives a clear exposition and we

follow it here. The test requires estimating two equations in a manner similar to

F-tests for the relevance of a regressor. One unresricted regression (including both

variables) and one restricted (including only one variable) are estimated separately

and the residuals are compared to see if there is a signi�cant �di�erence� going from

the unrestricted model to the restricted model. To test whether Xt Granger causes

Yt estimate the unrestricted model as:

Yt =
T∑
i=1

α1iYt−i +
T∑
i=1

β1iXt−i + v1t (7.5.1)

and the restricted model as:

Yt =
T∑
i=1

δ1iY t−i + v2t. (7.5.2)

Now construct the tests,

H0 :
T∑
i=1

β1iXt−i = 0→ xt does not Granger �cause� yt

HA :
T∑
i=1

β1iXt−i 6= 0→ xt Granger �causes� yt

This is tested by saving the residual sum of squares from both models and using

the formula:

RSSR−RSSU
KR
RSSU
(T−K)

∼ F (KR, T −K) , (7.5.3)

where:

• T = sample size

• RSSR = residual sun of squares (restricted model)

• RSSU = residual sum of squares (unrestricted model)
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• KR = number of restrictions (the number of Xt−i's removed)

• K = number of regressors (including the intercept) in the unrestricted regres-

sion.

As might be expected, it is also necessary to reverse the test and see if Yt Granger

�causes� Xt.

Unit Root Tests

Dickey-Fuller (DF) Test

The Dickey and Fuller (1979) tests determines whether a unit root is present in an

autoregression model. To see the motivation for the DF test procedure, we start

with the simplest example, an AR(1) model without an intercept:

Yt = φ1Yt−1 + εt, (7.5.4)

where εt has a zero mean, and is independently and identically distributed, i.e.,

εt ∼ iid(0, σ2). We can rewrite AR(1) model by subtracting Yt−1 from both sides of

(7.5.4):

4Yt = γYt−1 + εt, (7.5.5)

where γ = φ1 − 1. If γ = 0 (i.e., φ1 = 1), there is a unit root since Yt = Yt−1 + εt.

However, 4Yt = εt is a pure random walk process given that εt is a random variable

with zero mean, unit variance, and zero autocorrelations.

The Yt is integrated (or Yt ∼ I(1)) implying that future changes do not depend

on the current level. The null hypothesis is straightforward since it corresponds to

the existence of a (single) unit root, that is H0 : γ = 0 implying Yt = Yt−1 + εt and

the series Yt is I(1). The alternative hypothesis is one-sided alternative Ha : γ < 0

(i.e., φ1 < 1) and this result corresponds to Yt being an I(0) process.

Note that r > 0 is not chosen as an alternative hypothesis because it corresponds

to φ1 > 1 and in this case the process generating Yt will be unstable. The test

statistic is referred as τ̂ , and the appropriate critical values depend on the sample

size. The critical values can be found in Fuller (1976) or MacKinnon (1991).

Regression (7.5.4) can be extended to include an intercept:

Yt = µ+ φ1Yt−1 + εt. (7.5.6)



CHAPTER 7. INFORMATION DIFFUSION 128

Recall we subtract Yt−1 from both sides:

4Yt = µ+ γYt−1 + εt. (7.5.7)

Here, the null hypothesis is H0 : γ = 0 against the alternative hypothesis of Ha : γ <

0 and the test statistic is referred as τ̂µ.

Similarly, regression (7.5.4) can be extended to include both an intercept and a

trend:

Yt = µ+ βt+ φ1Yt−1 + εt, (7.5.8)

which can be rewritten as:

4Yt = µ+ βt+ γYt−1 + εt. (7.5.9)

The associated test statistic is referred as τ̂β.

Augmented Dickey-Fuller (ADF) Test

The Augmented Dickey Fuller test extends the DF test but it allows for the possibility

that the di�erence process is persistent. Consider an actual economic time series, Yt,

which can be generated by an AR(p) process:

Yt = µ+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt. (7.5.10)

However, an AR(1) process is used to �t time time series, Yt, such that:

Yt = µ+ φ1Yt−1 + υt. (7.5.11)

It follows that:

υt = φ2Yt−2 + φ3Yt−3 + ...+ φpYt−p + εt. (7.5.12)

Note the residual, υt, is not free of serial correlation because of the presence of

lagged Yt in υt and υt−k for k ≥ 1. To remove the serial correlations in residual, υt, a

common strategy is to add more lagged values of Yt (i.e., to increase the order of the

AR process) till a higher order of AR process, say AR(p), can generate white noise

residuals in (7.5.11).

Typically, the general-to-speci�c search strategy can be used to determine p.

Speci�cally, the search strategy starts with picking a maximum lag lenght, say p∗,
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that seems likely to ensure white noise residuals in the �tted equation (7.5.11). For

example, if Yt is monthly data, the maximum lag length p∗ would be set at 12. One

can then start to �t sucessively lower order models, such as AR(p∗− 1), AR(p∗− 2),

and so on until a lower order AR model possesses zero autocorrelations in the resid-

uals. An alternative popular approach is to choose p using information criteria, such

as Akaike Information Criterion (AIC) and Schwarz Information Criterion (SIC).

If p > 1 is found, Fuller (1976) suggests the AR(p) process in (7.5.10) can be

rewritten as:

4Yt = µ+ γYt−1 +

p−1∑
j=1

αj4Yt−j + εt. (7.5.13)

We will use an AR(2) model to illustrate this rewritting. Equation (7.5.14) gives an

AR(2) process:

Yt = µ+ φ1Yt−1 + φ2Yt−2 + εt. (7.5.14)

Note that this is the same as:

Yt = µ+ (φ1 + φ2)Yt−1 − φ2(Yt−1 − Yt−2) + εt. (7.5.15)

Subtracting Yt−1 from both sides of (7.5.15) gives:

4Yt = µ+ γYt−1 + α14Yt−1 + εt, (7.5.16)

where γ = φ1 + φ2 − 1 and α1 = −φ2. This shows that 4Yt−1 should be added to

the regression if the appropriate model is an AR(2). We can then test the unit root

by testing if γ = 0 in the AR(2) process. In this particular case, the standard DF

model has been �augmented� by 4Yt−1 (with coe�cient of α1) and we refer to this

as the ADF(1) model.

In general, the ADF(p) model (which corresponds to an AR(p + 1) model) can

be written as:

4Yt = µ+ γYt−1 +

p∑
j=1

αj4Yt−j + εt. (7.5.17)

To test whether a unit root is present, we test H0 : γ = 0. The associated test

statistic is referred as τ̂µ. The model (7.5.17) can also be extended to include a

determinstic trend:
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4Yt = µ+ βt+ γYt−1 +

p∑
j=1

αj4Yt−j + εt. (7.5.18)

In this case, the unit-root test statistic on H0 : γ = 0 is referred as τ̂β.

Cointegration Tests

The Engle-Granger (EG) Procedure

The di�erence between a cointegrating regression and a spurious regression is whether

a linear combination of I(1) variables is stationary. Suppose the variables Xt and

Yt are random walk processes, and we would like to determine whether a linear

combination of them can be reduced to I(0). First, their linear combination is

written as:

Yt = ϕ1 + ϕ2Xt + ξt (7.5.19)

Next, determining whether Xt and Yt are cointegrated, the natural focus will be on

the properties of the residual, ξt. If ξt ∼ I(0), then (7.5.19) is a cointegrating regres-

sion; if ξt ∼ I(1), then (7.5.19) is a spurious regression or a misspeci�ed regression

involving omitted relevant I(1) variables.

With this description in mind the Engle-Granger procedure (See Engle and Granger

1987) includes two steps. The �rst step of the test is to use either the DF or ADF

tests discussed earlier to assess the order of integration of each time series in the

regression. For simplicity, we continue to consider the bivariate case that involves

only two time series of Xt and Yt. The second step is to assess whether the residuals,

ξt, are consistent with I(1) process: If it is I(1), the regression (7.5.19) is not a

cointegrating regression; if it is I(0), then (7.5.19) is a cointegrating regression.

In sum, the Engle-Granger procedure has the following steps:

Step 1: Ascertain using DF procedures (ADF is recommended here) how many

series are I (1). Then create a residual by running a regression on the variable

of interest:

Yt
I(1)
− ϕ1 − ϕ2Xt

I(1)

= ξt.
I(0)?

Step 2: Run an ADF on ξt :

∆ξt = Πξt−1 +
n∑
i=2

ρi∆ξt−i + vt.
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where the hypotheses are:

H0:Π = 0⇒ ξt ∼I(1) �not cointegrated.�

HA:Π < 0⇒ ξt ∼I(0) �cointegrated.�

As a �nal matter, the Engle-Granger procedure requires the researcher to choose one

of the jointly endogenous variables to put on the left-hand side (i.e., as the dependent

variable) of the regression. However, this means one can reach di�erent conclusions

on the existence of cointegration.

The Johansen Procedure

An alternative multivariate � system based � approach, such as the Johansen

(1988, 1992) procedure has an advantage over the Engle-Granger procedure since all

variables are treated as endogenous. The researcher does not need to choose Xt over

Yt (or vice versa) as the dependent variable when testing for cointegration. With a

system of equations, testing for the existence of cointegration is based on the rank

of a matrix.

Johansen procedure can be illustrated by considering the multivariate model of

a VAR(k) with N variables:

Xt = Π1Xt−1 + Π2Xt−2 + ...+ ΠkXt−k + ΦDt + εt, t = 1, ..., T (7.5.20)

where Xt is a N × 1 vector, Dt is a d × 1 vector of deterministic terms which can

contain a constant, a trend, and (seasonal or event) dummy variables. Equation

(7.5.20) can be reparameterised as:

4Xt = Π1Xt−1 + Γ14Xt−1 + Γ24Xt−2 + ...+ Γk−14Xt−(k−1) + ΦDt + εt (7.5.21)

= Π1Xt−1 +
k−1∑
i=1

Γi4Xt−i + ΦDt + εt, t = 1, ..., T

where Π1 = αβ
′
is the coe�cient matrix on the lagged level (Xt−1), and k is the lag

length that can be chosen based on various information criteria (e.g., AIC and SIC)

� subject to the lag choice passing a test for the absence of serial correlation in the

residuals.
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The advantage of the parameterization in (7.5.21) is in the intepretation of the

coe�cients where the e�ect of the levels is isolated in the matrix αβ
′
. The row of

β
′
(i.e., the column of β) gives cointegrating vectors and the associated hypothesis

test is whether any column of β is statistically indi�erent from zero vectors. In order

to determine the number of cointegrating vectors in the system, the cointegration

rank of Π1 = αβ
′
has to be determined.

The rest of this section follows Johansen's framework (Johansen 1995) closely to

derive the formulation and solution for the problem of how to estimate the cointe-

grating rank of Π1.
16

Using new notation, we can rewrite (7.5.21) as:

Z0t = αβ
′
Z1t + ΨZ2t + εt, (7.5.22)

where Z0t = 4Xt with dimension of N × 1, Z1t = Xt−1 with dimension of N × 1,

Z2t = (4Xt−1,4Xt−2, ...,4Xt−(k−1), Dt)
′
with dimension of [N(k − 1) + d]× 1, and

Ψ = (Γ1,Γ2, ...,Γk−1,Φ) with dimension of N × [N(k − 1) + d].

Maximizing the log likehihood function of logL(Ψ, α, β,Ω) gives the �rst order

conditions for estimating Ψ as:

T∑
t=1

(Z0t − αβ
′
Z1t − Ψ̂Z2t)Z

′

2t = 0. (7.5.23)

Using a product moment matrix, we rewrite (7.5.23) as:

M02 = αβ
′
M12 + Ψ̂M22, (7.5.24)

where the product matrix is:

Mij = T−1

T∑
t=1

ZitZ
′

jt. i, j = 0, 1, 2 (7.5.25)

Postmultiplying (7.5.25) by M−1
22 and solving for Ψ̂ gives:

Ψ(α, β) = M02M
−1
22 − αβ

′
M12M

−1
22 . (7.5.26)

This leads to the de�nition of the residuals:

16For the complete version of the derivation, consult Johansen (1995).
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R0t = Z0t −M02M
−1
22 Z2t, (7.5.27)

R1t = Z1t −M12M
−1
22 Z2t.

Note that R0t (R1t) gives residuals that can be obtained by regressing4Xt (Xt−1)

on 4Xt−1, 4Xt−2,...,4Xt−(k+1), and Dt. Substitute Ψ from (7.5.26) into (7.5.22),

we solve for residuals of ε̂t:

ε̂t = Z0t − αβ
′
Z1t −ΨZ2t

= Z0t − αβ
′
Z1t − (M02M

−1
22 − αβ

′
M12M

−1
22 )Z2t

= Z0t −M02M
−1
22 Z2t − αβ

′
(Z1t −M12M

−1
22 Z2t) (7.5.28)

= R0t − αβ
′
R1t

Now rewrite (7.5.28) as a regression equation which regresses R0t on R1t:

R0t = αβ
′
R1t + ε̂t. (7.5.29)

For any �xed β, α and Ω can be estimated by regressing R0t on β
′
R1t:

α̂(β) = S01β(β
′
S11β)−1 (7.5.30)

where Sij = T−1
∑T

t=1RitR
′
jt = Mij −Mi2M

−1
22 M2j, i, j = 0, 1.

Ω̂(β) = S00 − α̂(β)(β
′
S11β)α̂(β

′
) (substitute for α̂) (7.5.31)

= S00 − S01β(β
′
S11β)−1β

′
S10.

Apart from the constant, which disappears when forming ratios, the likelihood func-

tion to be maximized is now:

L(β) = |Ω̂(β)| = |S00 − S01β(β
′
S11β)−1β

′
S10| (7.5.32)

Johansen (1995) has shown that the maximum of L(β) can be obtained by solving

the following eigenvalue problem:

|λS11 − (S11 − S10S
−1
00 S01)| = 0 (7.5.33)
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For the N solutions, λ1, λ2,..., λN , with corresponding eigenvectors ν1, ν2,..., νN ;

each λi is a scaler and each νi is a N × 1 vector. The λi are ordered such that

λ1 > λ2 > ... > λN . The space spanned by the eigenvectors corresponding to the

r largest eigenvalues is the r-dimensional �cointegrating space�. β̂ with a dimension

N × r corresponds to the �rst r eigenvectors (r = 0 ∼ N). For example, if r = 2,

β̂ is N × 2, then the �rst column is the eigenvector corresponding to the largest

eigenvalue, and the second column is the eigenvector corresponding to the second

largest eigenvalue. If r = 0, then Π1 = 0 and all the eigenvalues are zero.

Denote the eigenvalues and eigenvectors as λ̂i and β̂, respectively. Given the

choice of β̂, the resulting value of L(β) in (7.5.32) becomes:

L(β) = L(H(r))

= |S00|
|β̂ ′(S11 − S10S

−1
00 S01)β̂|

|β̂ ′S11β̂|
(7.5.34)

= |S00|
r∏
i=1

(1− λ̂i),

where H(r) denotes the hypothesis that the rank of Π1 is r. The likelihood ratio test

statistic for H(r) against H(N) is:

LR(r|N) = L(H(r))/L(H(N))

=
|S00|

∏r
i=1(1− λ̂i)

|S00|
∏N

i=1(1− λ̂i)
. (7.5.35)

The factor |S00| cancels, and the so-called Johansen's trace test statistic is:

Trace(r|N) = −2ln[LR(r|N)] (7.5.36)

= −T
N∑

i=r+1

ln(1− λ̂i).

A non-rejection of H(r) means the cointegration rank ≤ r.

To pinpoint the �exact� cointegration rank for the estimation system, Johansen

has suggested a test sequence. The test sequence starts with the �rst test that

sets r = 0, and the associated test statistic is Trace(0|N) = −T
∑N

i=1 ln(1 − λ̂i).



CHAPTER 7. INFORMATION DIFFUSION 135

If Trace(0|N) is larger than the critial value (which can be found in Johansen

and Juselius 1990), then reject H(0) and move onto testing H(1). Otherwise, if

Trace(0|N) is smaller than the critial value, then conclude that there is no cointe-

grating relationship in the system.

For the second test statistic, set r = 1, then the test statistic is Trace(1|N) =

−T
∑N

i=2 ln(1 − λ̂i). If Trace(1|N) is larger than the critical value, then reject

H(1) and move onto testing H(2). Contiune the sequence until H(N − 1) with

Trace(N − 1|N) = −ln(1− λ̂N). If Trace(N − 1|N) exceeds the critical value, then

reject H(N − 1) and the evidence is in favor of H(N).

A test statistic alternative to the trace test is the maximum eigenvalue test known

as λmax. λmax test is used to test a cointegrating rank of r against a cointegrating

rank of r + 1:

λmax = −2ln[LR(r|r + 1)]

= −T ln(1− λ̂r+1) (7.5.37)

For λmax test, a convenient notation to indicate which hypothesis is being tested

against which alternative is H(r|r + 1). Its test sequence starts with H(0|1), and

if H(0) is not rejected the sequence stops. Otherwise, move onto H(1|2) and if

necessary continue the testing sequence unitl H(N − 1|N).

The Johansen procedure can now be summarized:

1. Pick an autoregressive order k for the variables in the system.

2. Run a regression of4Xt on (4Xt−1,4Xt−2, ...,4Xt−(k+1), Dt)
′
and output the

residual γ1
t .

3. Run a regression of Xt−1 on (4Xt−1,4Xt−2, ...,4Xt−(k+1), Dt)
′
and output the

residual γ2
t .

4. Compute the squares of the canonical correlations between γ1
t and γ2

t , calling

these %2
1 > %2

2 > ... > %2
n .

5. Let T denote the number of time periods available in the data, compute the

trace test statistic as −T
∑N

i=k+1 ln(1− %2
i ). The null hypothesis is that there

are k or fewer than k cointegrating vectors. Alternatively, one can choose to

use the maximum eigenvalue test which gives statistic as −T ln(1−%2
r+1.). The
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null hypothesis in this case is that there are r cointegrating vectors and the

alternative hypothesis is that there are r + 1 cointegrating vectors.

6. Compare the test statistic to the appropriate table in Johansen and Juselius

(1990).

Application: Testing for the Boomerang E�ect

In this chapter the empirical implication of the model (See equation (7.3.2)) is that

when information di�usion exists � with a �nite σ2
e� Group H will have higher

forecast error since MSEH = (βµc̄L)2 σ2
e + σ2

η > σ2
η.

17

Panel A in Table 7.3 reports the results of the cointegration tests of the long-

run relation between MSEH and σ2
eLj

. Columns 1 and 2 in Panel A summarize

the results of cointegrating relations for two pairs of variables,
(
MSEH , σ

2
eL1

)
and(

MSEH , σ
2
eL2

)
. Both the maximum eigenvalues and trace statistics indicate that

there are long-run equilibrium relations for both. Using the Johansen cointegration

procedure, they �nd the cointegrating vectors of
(
MSEH , σ

2
eLj

)
are (1,−29.58) and

(1,−21.54) for j ∈ {1, 2}.
These results show a positive long-run equilibrium relation with the existence of

the boomerang e�ect between MSEH and σ2
e . It suggests that the mean square

error on in�ation forecasts for the respondents who hold a college degree or above

(MSEH) are positively related with the measurement errors resulting from the non-

degree-holding respondents (σ2
e).

The results in column (3), where the cointegrating system consists of all three vari-

ables of MSEH , σ
2
eL1

, and σ2
eL2

, provides further evidence to support the boomerang

e�ect found in columns (1) and (2). With an estimated cointegrating vector of

(MSEH , σ
2
eL1

, σ2
eL2

) = (1,−20.52,−0.79), this robustness check shows that both

σ2
eL1

and σ2
eL2

are positively related with MSEH in the long run; that is, MSEH =

20.52σ2
eL1

+ 0.79σ2
eL2

. The results in column (4) also show that the robust cointe-

grating vector among the three variables is solely the result of the boomerang e�ect

since the variances of the measurement errors in the two levels of Group L are not

cointegrated.

Furthermore, they examine if the boomerang e�ect is robust when both levels of

Group L are combined. They determine this case by averaging the in�ation expec-

tations from Groups L1 and L2 to obtain σ2
e . The cointegration estimation indicates

17The Johansen test is applicable here and we report the results in Granato, Lo, and Wong (2011).
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Table 7.3: Johansen Cointegration Tests and Granger Causality Tests: MSEH , σ
2
ẽ,L1,

and σ2
ẽ,L2

(results available from the authors) that the boomerang e�ect is still robust where

σ2
e is positively related with MSEH .

Additional support for a boomerang e�ect occurs if we see that the direction of

causality runs from σ2
e to MSEH (but not vice versa). Panel B of Table 3 gives

the results of the Granger-causality tests. The results from systems (1) and (2)

indicate rejection of the null hypotheses that σ2
eLj

does not Granger causes MSEH ,

for j ∈ {1, 2} . The respective test statistics are equal to 14.36 and 19.43 and are

signi�cant at the 0.05 level. On the other hand, null hypothesis (for reverse causation)

is not rejected. Column (3) in Panel B report associated results which are highly

consistent with �ndings in columns (1) and (2).



Chapter 8

Political Parties and Representation

The relation between political parties and representation provides a useful window

for understanding methodological uni�cation. One well researched area focuses on

when and why voters choose one party over the others. This choice is based on the

relative political positions of parties on key policies. The work of Kedar (2005) is the

focus of this chapter. Here EITM links the behavioral concept of decision making

and the applied statistical concept, nominal choice. Empirical tools in this chapter

involve discrete choice estimation methods. Formal tools include the application of

basic decision theory, including an understanding of random utility models.

8.1 Step 1: Relating Decision Theory and Discrete

Choice

Voting provides a useful window into methodological uni�cation. Hotelling (1929)

and Downs (1957) argue that voters choose one party over the others based on

the relative political positions of parties � proximity voting theory. Voters are more

likely to vote for a political party if the position of the party is closer to a voters' ideal

position. As the party's position further deviates from a voter's ideal position, the

voter receives less utility and is less likely to vote for it.1 While the voting literature

�nds some empirical support for the proximity model, Kedar (2005) believes this

e�ect would be reduced if the institutional environment involves power-sharing.

1Applications of this particular utility function abound. Erikson, Mackuen and Stimson (2002),
for example, assume that voters' utility is an inverse function of the squared distance of party
political position and the voters' ideal position.

138
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8.2 Step 2: Analogues for Decision Making and Nom-

inal Choice

Kedar (2005) asserts that, along with the proximity of parties' positions, voters are

also concerned about each party's contribution to the aggregate policy outcome.

Beginning with the proximity model:

Uij = −β1 (vi − pj)2 , (8.2.1)

where Uij is the utility of voter i for party j, vi is the ideal point of voter i, pj

is the position of party j, and β1 is a scalar representing the importance of party-

position deviations. In Kedar's analogue for decision making, equation (8.2.1), voter

i perceives disutility for party j when the position of party j deviates from voter i′s

ideal point. On the other hand, if the position of party j is equivalent to his ideal

point (i.e., vi = pj), no disutility is perceived to result from party j.

Assuming that party positions can a�ect policy outcomes, Kedar (2005) speci�es

the policy outcome as a weighted average of policy positions of the respective parties:

P =
m∑
k=1

skpk, (8.2.2)

where there are m parties in the legislature, 0 < sk < 1 is the relative share of party

k, and
∑m

k=1 sk = 1 for all k.

If voters are policy-outcome oriented, and concerned that the policy outcome

may deviate from their ideal point if party j is not elected, then the utility of voter

i pertaining to party j becomes:

Uij = −β2

[
(vi − P )2 −

(
vi − P−pj

)2
]
, (8.2.3)

where:

P−pj =

(
1∑
k 6=j sk

)∑
k 6=j

skpk. (8.2.4)

Equation (8.2.4) represents the policy outcome if party j is not in the legislature

and β2 is a scalar weighting the deviations of the policy outcome when party j is

excluded.

Equation (8.2.3) provides an important insight on how voters view the contribu-

tion of party j to the policy outcome a�ecting their utility. If party j takes part



CHAPTER 8. POLITICAL PARTIES AND REPRESENTATION 140

in policy formulation and makes the policy closer to voter i's ideal point vi, that

is,
(
vi − P−pj

)2
> (vi − P )2, then voter i will gain positive utility when party j is

involved in the policy formation process (i.e., Uij > 0). However, if the inclusion of

party j makes the policy outcome increase in distance from voter i's idea point such

that
(
vi − P−pj

)2
< (vi − P )2 , then the utility of voter i for party j is negative.

Now, consider the expectations analogue. Assume voter i has expectations (an

expected value) concerning party j based on the weighted average of both the party's

relative position and its contribution to policy outcomes. This analogue2, in the

context of voter i's utility for party j, can be written as:

Uij = θ
{
−γ (vi − pj)2 − (1− γ)

[
(vi − P )2 −

(
vi − P−pj

)2
]}

+ δjzi, (8.2.5)

where θ is a scalar, δj is a vector of coe�cients on voter i's observable variables zi

for party j, and γ ≡ β1/ (β1 + β2). When γ → 1, the implication is that voters are

solely concerned with a party's positions. This situation is called representational

voting behavior. On the other hand, if γ → 0 then voters vote for a party such that

the policy outcome can be placed at the voter's desired position(s). This outcome is

called compensational voting behavior.

From equation (8.2.5) , we obtain voter i's optimal or �desired position for party

j by solving the �rst order condition of Uij with respect to pj:

p∗j = vi

[
γ (1− sj) + sj

γ
(
1− s2

j

)
+ s2

j

]
−

(1− γ)
(
sj
∑m

k=1,k 6=j skpk

)
γ
(
1− s2

j

)
+ s2

j

. (8.2.6)

When γ → 1 (representational voting), we have:

p∗j = vi. (8.2.7)

But, when γ → 0 (compensational voting), we have:

p∗j =
vi −

∑m
k=1,k 6=j skpk

sj
, (8.2.8)

2Note the analogue here for expectations is not to be confused with conditional expectation
analogues discussed in earlier chapters.
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and the policy outcome would be:

P
∣∣∣γ→0,pj=p∗j

=
m∑
k=1

skpk = sjpj +
m∑

k=1,k 6=j

skpk

= sjp
∗
j +

m∑
k=1,k 6=j

skpk

= sj
vi −

∑m
k 6=j skpk

sj
+

m∑
k=1,k 6=j

skpk

= vi. (8.2.9)

8.3 Step 3: Unifying and Evaluating the Analogues

In (8.2.7) thru (8.2.9), voters make an optimal voting decision based on representa-

tional (proximity) and compensational voting considerations. These two considera-

tions re�ect the levels of political bargaining in di�erent institutional systems. In

majoritarian systems, where the winning party is able to implement its ideal policy

with less need for compromise, voters place greater value on γ and vote for the party

positioned closest to their ideal position. However, in the case where institutional

power sharing (γ is small) exists, voters select a party whose position is further from

their ideal positions so as to draw the collective outcome closer to the voter's ideal

point.

Kedar tests these empirical implications using survey data from Britain, Canada,

Netherlands, and Norway:

Hypothesis 1: Voters' behavior in the countries with a majoritarian system fol-

lows the proximity model more closely (larger γ) than those in the countries with a

consensual system (smaller γ).

Hypothesis 2: The pure proximity model (γ = 1) does not su�ciently represent

voting behavior.

For Hypothesis 1, Kedar (2005) �rst identi�es the institutional features of Britain,

Canada, Norway, and the Netherlands. Using the indicators of majoritarianism and

power-sharing in Lijphart (1984), she concludes that Britain and Canada are more

unitary whereas the Netherlands and Norway are more consensual.

Methodological uni�cation occurs when Kedar derives an empirical analogue for

discrete choice, the log-likelihood multinomial model based on equation (8.2.5), and

estimates issue voting in four political systems using three measures: i) seat shares
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in the parliament; ii) vote shares; and iii) portfolio allocation in government.

The empirical results support the �rst theoretical hypothesis: voting behavior

in the majoritarian systems (i.e., Britain and Canada) is more consistent with the

proximity model relative to that in the consensual systems (i.e., the Netherlands

and Norway). Hypothesis 2 is tested using a likelihood ratio test. The results show

that, in all four political systems, compensational voting behavior exists. The pure

proximity model is an insu�cient explanation.

8.4 Leveraging EITM and Extending the Model

In forming the behavioral mechanism of decision making, Kedar chooses utility max-

imization as an analogue: voters select their ideal party position and/or policy out-

come by maximizing their utility. The author links the theoretical �ndings of the

optimal choice model to multinomial estimation.

One way to build on the formal model is to relax the behavioral assumption that

voters' expectations are error free since it is well-known that equilibrium predictions

change when expectations are based on imperfect or limited information. The ex-

tension would amend the formal model of voter expectations to incorporate modern

re�nements on how voters adjust and learn from their expectation errors. Lever-

aging Kedar's EITM design allows drawing (empirical) implications on how voter

expectations and learning a�ect ex-ante model predictions.

8.5 Appendix

In contrast to standard regression models which have continuous dependent vari-

ables, discrete choice models are statistical procedures that model choice made by

individuals among a �nite set of discrete alternatives. They can be classi�ed ac-

cording to the number of available alternatives. A discrete model for explaining the

outcome as a choice between two alternatives is referred to as a binomial model (i.e.,

binary choice model). Discrete choice problems that involve choices between more

than two alternatives are termed multinomial models. Examples of the application

of multinomial models include the decision regarding which job/occupation to take,

which shopping area to go to, which car to buy, which candidate to vote for in an

election, and which mode of transportation to use for travel.

Discrete choice models estimate the probability that a person chooses a particular

alternative. Sharing the same spirit as regression analysis, that links a dependent
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variable to a set of factors, a discrete choice model statistically links the choice made

by each individual to a set of relevant factors. These factors typically include the

characteristics of the individual (such as education level, gender, income level, and

marital status) and the attributes of the alternatives (such as travel time, and costs

in a study of which mode of transportation to take). A general framework for such

probability models can be written as:

Prob(Individual i chooses alternative choice j) ≡ Pij (8.5.1)

= F (Xij : β),

where Xij = [Zi, xij,xik], ∀j 6= k, Zi is a vector of characteristics of individual i, xij

(xik) is a vector of attributes of alternative j (other alternatives k) for individual i,

and β is a set of parameters that are estimated by the choice probability model.

8.5.1 Empirical Analogues

Di�erent assumptions about error distributions lead to di�erent statistical choice

models. In the binary choices setting, these models are binary probit and binary

logit models. For multinomial choice settings, these models include multinomial

logit and conditional logit models. Here we brie�y discuss each of these statistical

choice models.

Binary Choice Models

In this setting, choices can include (among other things) a decision between engaging

in an activity (or not), or a decision between two alternative activities.

Probit Models

For a decision between taking on an activity (Y = 1) or not (Y = 0), as in index

function model (8.5.18) we let Y ∗ be a latent variable representing the net bene�t of

taking on the activity. Alternatively, one can regard Y ∗ as the utility of choosing the

activity. Assume an individual would take on an activity (Y = 1) when the utility

of choosing the activity is positive (ie., Y ∗ > 0). We write the speci�cation of the

model as:
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Y ∗ = β
′
X + ε

Y =

1, if Y ∗ > 0

0, otherwise
(8.5.2)

and ε ∼ standard normal.

With the assumption that error terms (ε) are distributed standard normal, the prob-

ability of choosing the activity can be presented as a probit model3:

Prob(Y = 1) =

ˆ β
′
X

−∞
φ(t)dt = Φ(β

′
X), (8.5.3)

where the function Φ(·) denotes the cumulative distribution of standard normal.

If the binary choice is a decision between two alternative activities such as choos-

ing activity 1 (Yi1 = 1) or activity 2 (Yi1 = 0), the speci�cation of the model is:

Ui1 = β
′
Xi1 + εi1

Ui2 = β
′
Xi2 + εi2

Yi1 =

1, if Ui1 > Ui2

0, otherwise

and εi1, εi2 ∼ standard normal,

(8.5.4)

where Ui1 (Ui2) is the utility that individual i obtains from choosing activity 1 (2).

With the assumption that both error terms (εi1 and εi2) are distributed standard

normal, the probability of choosing activity 1 is a probit model:

Prob(Yi1 = 1) = Prob(Ui1 > Ui2)

= Prob(β
′
Xi1 + εi1 > β

′
Xi2 + εi2) (8.5.5)

= Prob(εi2 − εi1 < β
′
Xi1 − β

′
Xi2)

= Φ(β(Xi1 −Xi2)/
√

2).

3In this appendix we assume the error term (ε) is distributed standard normal (i.e., ε ∼ N(0, 1)).
We can also consider a case where ε has a general normal distribution, ε ∼ N(0, σ2). In this case
the probit model can be written as: Prob(Y = 1) = Φ(β

′
X/σ).



CHAPTER 8. POLITICAL PARTIES AND REPRESENTATION 145

Logit Models

The speci�cation of the model is the same as model (8.5.2) except that the error

terms are assumed to have a logistic distribution (i.e., ε ∼ logistic). Then, the

probability of choosing the activity is a logit model:

Prob(Y = 1) =
eβ
′
X

1 + eβ
′X
. (8.5.6)

Similarly, the speci�cation of the model is the same as model (8.5.4) except that we

assume εi1, εi2 ∼ iid extreme values. When both error terms are iid extreme values,

their di�erence is distributed logistically. Therefore, the probability of choosing

activity 1 is a logit model:

Prob(Yi1 = 1) =
eβ
′
Xi1

eβ
′Xi1 + eβ

′Xi2
. (8.5.7)

Multinomial Choice Models

Here the decision involves more than two available alternatives. It has been pointed

out that the probit model has limited use in multinomial choice models because of the

need to evaluate multiple integrals of the normal distribution. With the limited use

of probit models, we focus our attention on multinomial logit models and conditional

logit models.

Multinomial Logit Models

The multinomial logit (MNL) models are appropriate to use when the data consist

of individual-speci�c characteristics. The general form of MNL models is:

Uij = β
′
jZi + εij

and εij ∼ iid extreme values.
(8.5.8)

where Uij is individual i′s utility of choosing the jth alternative, and Zi gives a

vector of values that represent individual's characteristics. The model estimates a

set of regression coe�cients for each of the alternatives (βj). The utility for all

alternatives depends on the characteristics of the individual, but the coe�cients are

di�erent for di�erent alternatives.

Following the concepts introduced in the random utility model (RUM) earlier,

suppose that an individual i, who is faced with �J� alternatives, would choose alter-
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native j, then we know they must obtain the maximum utility from alternative j.

Since only di�erences in utility matter when choosing an alternative with the highest

utility, it is necessary to normalize βj = 0 (for one alternative). For convenience, we

assume β1 = 0. Then, the resulting choice probabilities are:

Prob(Y = j) = Prob(Uij > Uik) ∀j 6= k

=
eβ
′
jZi

1 +
∑J

k=1 e
β
′
kZi

for j = 1, 2, 3, ..., J. (8.5.9)

Conditional Logit Models

When the data consist of choice-speci�c attributes, the appropriate choice model to

use is the conditional logit (CL) models. The general form of the CL is:

Uij = β
′
Xij + εij

Xij = [xij, Zi]

and εij ∼ iid extreme values.

(8.5.10)

where xij gives a vector of values that represent attributes of alternatives, and Zi

gives a vector of values representing an individual's characteristics. If an individual i,

who is faced with �J� alternatives, ends up choosing alternative j, then we know they

obtain the maximum utility from alternative j with the resulting choice probabilities:

Prob(Y = j) = Prob(Uij > Uik) ∀j 6= k

=
eβ
′
Xij∑J

j=1 e
β′Xij

for j = 1, 2, 3, ..., J. (8.5.11)

The di�erence between MNL and CL models is that in CL models the utility for each

alternative depends on the attributes of the choice in addition to the characteristics of

the individual. Importantly, the attribute (xij) varies across the choices and possibly

across the individuals as well.

This unique setup marks Daniel McFadden's most in�uential contribution in dis-

crete choice models (See Manski 2001). That is, enabling forecasting in a new setting

through characterizations of alternatives and individuals. To be more speci�c, there

is no way to predict the choice or demand for a new good or behavior of new individ-

uals because both goods and individuals are qualitatively distinct. McFadden's work
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departs from standard practice by allowing the utility function to take the following

form:

Uij = f(xj, Zi) + εij, (8.5.12)

where Uij maps the attributes of alternatives and individuals into utility values.

This characterization of alternatives and individuals as attribute vectors enables

forecasting, as the qualitative distinctions among alternatives and individuals are

mapped into quantitative di�erences in their attributes. In this setting, utility of

any alternative to any individual can be determined as long as the attributes (xj,

and Zi) are known and the form of utility is also partially known (εij captures the

unknown part of utility form). Therefore, the individual's choice behavior becomes

predictable.

Estimation and Hypothesis Tests

Estimation

In nearly all cases, the method of estimation for discrete choice models is maximum

likelihood. For binary choice models, each observation is treated as a single draw

from a Bernoulli distribution. The resulting general format of the likelihood function

(or the joint probability) for a sample of n observations can be written as:

L =
n∏
i=1

πYi1i1 π
Yi2
i2 . (8.5.13)

Or taking the logs, we obtain:

log L =
n∑
i=1

[Yi1log(πi1) + Yi2log(πi2)] , (8.5.14)

where the dependent variable is individual choice such that Yi1 = 1 if the ith indi-

vidual chose alternative 1 between two available alternatives, and Yi1 = 0 otherwise;

and πi1 is the probability of individual �i� (i = 1, 2, 3, ..., n) choosing for alternative

1.

The estimation for multinomial models is an extension of binary choice models.

The general format of a likelihood function for a multinomial choice model is:

L =
n∏
i=1

πYi1i1 π
Yi2
i2 ...π

Yim
im . (8.5.15)
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Again, taking logs:

log L =
n∑
i=1

m∑
j=1

Yijlog(πij), (8.5.16)

where πij is the probability of individual �i� (i = 1, 2, 3, ..., n) choosing alternative

j (j = 1, 2, 3, ..., m), and πij = 1 if alternative j is chosen by individual i and 0 if

not for the m possible outcomes. Note that for each individual i, one and only one

of the πij's is 1.

Since this appendix is for reference purpose only, we will not go into a discussion

of the various properties and the necessary conditions for the maximum likelihood

estimation. Interested readers should consult standard econometrics textbooks (e.g.,

Greene (2011) and Hendry (1995)) for relevant information. Also, detailed proofs for

some of the models discussed above can be found in McFadden (1984).

Hypothesis Tests

A relevant hypothesis test mentioned in Chapter 8 (and used in Kedar (2005)) is a

likelihood ratio test. The likelihood ratio statistics based on (8.5.16) can be computed

as:

LR = −2
[
lnL̂r − lnL̂

]
, (8.5.17)

where L̂r and L̂ are the log-likelihood functions evaluated at the restricted and un-

restricted estimates, respectively. In Kedar (2005), the hypothesis test is whether

γ = 1. The theoretical importance of this coe�cient (γ ∈ (0, 1)) is that it repre-

sents components of voter utility such that the more proximity-lead is the voting,

the larger the coe�cient.

8.5.2 Formal Analogues

For an individual to arrive at an actual choice, contemporary choice theory conceptu-

alizes that individuals when faced with choices among a number of alternatives adopt

a variety of decision rules. The following is a discussion of two common decision rules:

the marginal decision rule and the utility-maximization rule.
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Marginal Decision Rule

One of the simplest decision rules is the marginal decision rule. It states that whether

an individual takes on an additional activity (Y = 1) or not (Y = 0) is based

on whether they receive the net bene�t (Y ∗) by opting to do the activity. The

net bene�t is not observable because it is de�ned as the di�erence between the

marginal bene�t and marginal cost, which can both be derived from an individual's

unobservable utility function. Although the net bene�t of choosing to do an activity

is not observable, the choice outcome of an individual is observed. Consequently, the

individual choices can be modeled using an index function model:

Y ∗ = β
′
X + ε (8.5.18)

and Y =

1, if Y ∗ > 0

0, otherwise.

The choice probability is:

Prob(Y = 1) = Prob(Y ∗ > 0)

= Prob(β
′
X + ε > 0) (8.5.19)

= Prob(ε > −β ′X).

Greene (2011) noted that discrete dependent variable models are often cast in the

form of an index function model. See also Nakosteen and Zimmer (1980) for an index

function model used for an application of a discrete choice model.

Utility-Maximization Rule: Random Utility Models

Another commonly used rule for decision-making is utility maximization. Applying

basic utility theory to the problem of discrete choice, McFadden's pioneering work

(1973, 1974) introduced the key methodological framework, random utility models

(RUM), to modern econometric analysis of discrete choice. RUM supposes that each

member of a population of interest faces a �nite choice set and selects an alternative

that maximizes utility.

To demonstrate RUM, let Uij and Uik be the individual i′s utility for two al-

ternative choices: Uij (Uik) is the utility that individual i obtains from choosing
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alternative j (k). Using the rule of utility-maximization, individual i chooses the

alternative providing the highest utility. Since an individual's utility from choosing

an alternative is not observable, it is modeled in a way to depend on some variables

(X) a researcher observes and on some variables (εj) the researcher cannot observe:

Uij = β
′

jX + εj, (8.5.20)

where X = (Zi, xij), Zi is a vector of characteristics of individual i, and xij is a

vector of attributes of alternative j of individual i.

Although, individual i′s utility for either alternative is not observable, observing

his choice outcome indicates which alternative between j and k gives higher utility.

We designate the indicator variable of the choice outcome (Yij) using a dummy

variable. Therefore, the individual choices is modeled using the following RUM:

Uij = β
′
jX + εj

Uik = β
′

kX + εk,

and Yij =

1, if Uij > Uik, ∀j 6= k

0, otherwise.
(8.5.21)

The choice probability is:

Prob(Yij = 1) = Prob(Uij > Uik)

= Prob(β
′

jX + εj > β
′

kX + εk) (8.5.22)

= Prob(εk − εj < β
′

jX − β
′

kX)

= Prob(ε < −β ′X).

In RUM's, utilities are conceptualized as random variables. McFadden inter-

preted the �randomness� in RUM as arising from cross-sectional variation in utility

functions across the population. He emphasized the idea that individual utilities will

not always be the same under identical conditions. This heterogeneity is re�ected in

the random variation of utility assessment and measurement error.

Details on the Kedar (2005) Application

It is this framework of utility-maximization multinomial response models that was

used by Kedar (2005) to setup a voting behavior model for empirical testing. Recall
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a key equation (8.5) that gives voter i′s utility for party j:

Uij = θ
{
−γ (vi − pj)2 − (1− γ)

[
(vi − P )2 −

(
vi − P−pj

)2
]}

+ δjzi,

where (vi − pj)2 is the measurement for representational voting behavior a�ecting

voter i′s utility for party j, and
[
(vi − P )2 −

(
vi − P−pj

)2
]
is the measurement for

compensational voting behavior a�ecting voter i′s utility for party j. We can rewrite

equation (8.5) as:

Uij = θ {−γ(representationalij)− (1− γ) (compensationalij)}+ δjzi, (8.5.23)

Since equation (8.5.23) involves data that consist of choice-speci�c attributes (i.e.,

representationalij and compensationalij) in addition to individual-speci�c charac-

teristics (zi), with the assumption of logistic error terms (such that f(a) = exp(a)),

the appropriate statistical model for estimation is the CL model. The resulting choice

probability is:

Prob(V oteri = j) ≡ πij =
f(Uij)∑m
k=1 f(Uik)

, (8.5.24)

where πij denotes the probability of voter i (i = 1, 2, 3, ..., n) voting for party j

(j = 1, 2, 3, ..., m). The following maximum likelihood function can, therefore, be

derived for estimation and hypothesis testing:

log L =
n∑
i=1

m∑
j=1

Yijlog(πij), (8.5.25)

where Yij = 1 if the ith voter votes for party j, and Yij = 0 otherwise.



Chapter 9

Voter Turnout

Voter turnout studies have a rich history (e.g., Merriam and Gosnell 1924; Milbraith

1965; Blais 2000). In this chapter we present Achen's (2006) EITM approach to the

topic. The EITM linkage is between the behavioral concepts � decision making

and learning � and the applied statistical concept of nominal choice. What is also

important about Achen's approach is the ability to link formalization with known

distribution functions. In prior examples the EITM link was accomplished in ways

not involving distribution functions.

The empirical tools in this chapter include discrete choice estimation methods.

The background for these empirical tools were presented earlier in Chapter 8. The

formal tools involve the use of Bayesian updating.1 and a basic understanding of

distribution functions is also required.

9.1 Step 1: Relating Decision Making, Learning,

and Discrete Choice

In prior studies of turnout, researchers used discrete choice models to estimate the

probability of voting. The explanatory variables in these empirical models include

ad-hoc transformations. For example, age, the square of age, education level, and the

square of education level are used. However, there is weak theoretical justi�cation

for the squared terms. The variables are included typically for the sake of a better

statistical �t within sample. Yet, Achen (2006) argues this:

...lack of theoretical structure leaves researchers free to specify their sta-

1Note that Achen demonstrates an alternative analogue for learning. In previous chapters adap-
tive learning tools were used as the learning analogue.
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tistical models arbitrarily, so that even closely related research teams

make di�erent choices...These modeling choices have substantial impli-

cations if we really mean them: If age measures learning, for example,

it makes a di�erence whether over a lifetime, political learning acceler-

ates, decelerates, or is constant. Alas, the theory that would provide the

interpretation and structure our specications is missing (pages 2-3).

With this criticism in mind, Achen (2006) provides an estimated model with a theo-

retical interpretation (i.e., no �squared� variables). The intuition behind his behav-

ioral model, the way he conceptualizes the decision to vote, is that it is an �expressive

act�2 where potential voters learn about the candidates via party label or contact from

a trusted source. He further asserts that:

written down formally, these simple ideas generate mathematical implica-

tions that map directly onto the behavioral literature and connect closely

to what the voters are actually doing...Moreover, the model implies new

functional forms for the statistical modeling of voter turnout. The result-

ing predictions go through the data points, while those from the most

widely used statistical specications in the behavioral literature do not

(pages 4-5).

Turning now to the analogues for decision making, learning and discrete choice �

we discuss how they can be linked.

9.2 Step 2: Analogues for Decision Making, Learn-

ing, and Discrete Choice

Achen's theoretical model assumes a voter receives positive utility by voting if he

expects the true value of the di�erence between two parties in the next period, un+1,

to be di�erent from zero (where n is the number of prior elections that the voter

experiences). Achen assumes, too, that the voter does not have perfect foresight on

the true value of the party di�erences. Instead the voter �learns� the expected value

based on his information set (updated by a Bayesian mechanism).

2Achen de�nes an expressive act as �a decision to do ones duty or take pleasure in a collective en-
terprise or cheer for ones team without imagining that one might personally determine the outcome
of the game (Milbrath,1965, 12-13).� (page 5).
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The subjective (expected) distribution of un+1 can be written as:

f (un+1 |I ) , (9.2.1)

where f (·) is the probability density distribution based on the voter's information

set I given the period of n. The corresponding cumulative distribution function (cdf)

from equation (9.2.1) is:

F (un+1 |I ) , (9.2.2)

where F (·) is the cdf with the mean ûn+1 and variance σ2
n+1.

For theoretical convenience, Achen (2006) assumes that ûn+1 is non-negative: the

voter only votes for the party valued higher than another. The probability of the

voter making a correct decision is when un+1 ≥ 0, is therefore:

Pr (correct) = 1− F (0 |I ) , (9.2.3)

whereas the probability of an incorrect decision is:

Pr (incorrect) = F (0 |I ) . (9.2.4)

If we assume a voter will vote only if the probability of making a correct decision

exceeds that of making an incorrect decision, then we can present the expected

bene�t of voting, E (Dn+1), in the next period given by the di�erence between the

two probabilities:

E (Dn+1) = α [Pr (correct)− Pr (incorrect)]

= α [1− F (0 |I )− F (0 |I )]

= α [1− 2F (0 |I )] ,

where α > 0 represents the weight (importance) of voting.

Following Downs (1957), Achen (2006) suggests that the utility of voting in period

n + 1 is the di�erence between the expected bene�t of voting, E (Dn+1) , and the

cost of voting:

U = E (Dn+1)− c

= α [1− 2F (0 |I )]− c, (9.2.5)

where c is the cost of voting. Assuming that un+1 is normally distributed, we can
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transform equation (9.2.5) to:

U = α [1− 2Φ (−ûn+1/σn+1)]− c, (9.2.6)

where Φ (·) is a standard normal cdf. Since Φ (−z) = 1 − Φ (z) , we can rewrite

equation (9.2.6) as:

U = α [2Φ (ûn+1/σn+1)− 1]− c. (9.2.7)

Achen argues that voters use a Bayesian updating procedure (assuming a normal

distribution of un+1 ) and voters �learn� the true un+1 based on: i) the di�erence(s)

in party identi�cation (PID) from the last period, un; ii) the campaign information,

cn+1; and iii) a trusted information source, qn+1, received from a political party.3

The learning process can now be characterized. The posterior mean as it pertains

to party identi�cation is:

ut = δ + vt, (9.2.8)

where ut ∼ N (δ, w2). The voter �rst updates the posterior mean of his PID up to

time n using the standard Bayesian formulation:

δ̂n =
h1ūn
h0 + h1

, (9.2.9)

where ūn = Σut
n

is the mean of PID based on past voting experience, h1 = (w2/n)
−1

is the inverse of the sample variance, and h0 = (σ2
0)
−1

represents the inverse of the

prior variance, σ2
0. In the next period, the voter also receives new information from

the party campaign:

cn+1 = un+1 + θn+1 + εn+1, (9.2.10)

where θ ∼ N (0, ϕ2) and ε ∼ N (0, τ 2/m).

Based on the posterior mean of PID at time n (i.e., δ̂n, in equation (9.2.9)), the

campaign information, cn+1, in equation (9.2.10), and the trusted information source,

qn+1, at time n+ 1, we can use the same Bayesian updating procedure to update the

posterior mean of the PID di�erence ûn+1:

ûn+1 =
hcδ̂n + hτcn+1 + hqqn+1

hc + hτ + hq
, (9.2.11)

where hc ≡
[
(h0 + h1)−1 + w2

]−1
, hτ ≡ (ϕ2 + τ 2/m)

−1
, and hq is the inverse of

3Achen (2006) also suggests that trusted information can also come from the voter's spouse or
some interest groups.
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known variance of the trusted information source. The posterior variance of ûn+1 is

presented as:

σ2
n+1 =

1

hc + hτ + hq
. (9.2.12)

To derive the utility function of voting with the feature of Bayesian learning, we

substitute equations (9.2.11) and (9.2.12) into equation (9.2.7):

U = α

[
2Φ

((
hcδ̂n + hτcn+1 + hqqn+1

hc + hτ + hq

)
/

(
1

(hc + hτ + hq)
1/2

))
− 1

]
− c

= α

[
2Φ

(
hcδ̂n + hτcn+1 + hqqn+1

(hc + hτ + hq)
1/2

)
− 1

]
− c. (9.2.13)

9.3 Step 3: Unifying and Evaluating the Analogues

To estimate the determinants of voting turnout, Achen presents the probit model

which follows from equation (9.2.13). Let there be a critical level of utility, call it

U∗, such that if U > U∗, the voter will vote, otherwise the voter will not. Given the

normality assumption for the utility distribution, we can construct the probability

that U∗ is less than or equal to U based on the normal cumulative density function

(cdf):

Pr (vote = 1 |PID, Campaign Information, and Trusted Source)

= Pr (U∗ ≤ U)

= Φ

(
α

[
2Φ

(
hcδ̂n + hτcn+1 + hqqn+1

(hc + hτ + hq)
1/2

)
− 1

]
− c

)
. (9.3.1)

In equation (9.3.1) , we can see that the inner normal cdf represents the Bayesian

learning process and the outer normal cdf is used for the purpose of discrete choice

estimation. At this point uni�cation is achieved.

Using maximum likelihood estimation, Achen (2006) estimates simultaneously

two normally distributed cdf's in equation (9.3.1): a double-probit. To interpret

the coe�cients, we �rst focus on the inner normal cdf. If the voter does not

have accurate information about the party, that is, (hc + hτ + hq)
1/2 = 0, then

Φ
(
hcδ̂n+hτ cn+1+hqqn+1

(hc+hτ+hq)
1/2

)
= Φ (0) = 1/2. In this case equation (9.3.1) is equivalent
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to:

Pr (vote = 1 |I ) = Φ

(
α

[
2Φ

(
hcδ̂n + hτcn+1 + hqqn+1

(hc + hτ + hq)
1/2

)
− 1

]
− c

)
= Φ (α [2Φ (0)− 1]− c)

= Φ (−c) . (9.3.2)

Given that c is the z-value which ranges between 2 or 3, then Φ (−c) will range

between -2 and -3 implying that the probability of voting will be very low.

On the other hand, if the voter is fully informed and the posterior precision of in-

formation is quite large, that is, (hc + hτ + hq)
1/2 →∞, then Φ

(
hcδ̂n+hτ cn+1+hqqn+1

(hc+hτ+hq)
1/2

)
=

Φ (∞)→ 1. Therefore, we have:

Pr (vote = 1 |I ) = Φ (α [2(1)− 1]− c)

= Φ (α− c) . (9.3.3)

Given that α can range between 4 and 5, Φ (α− c) will range between 2 and 3. This

relation shows that the probability of voting will be high and close to 1.

To estimate equation (9.3.1) , Achen uses the variables, systemtime and education,

as the proxies for PID, δ̂n, and campaign information, cn+1, respectively. Systemtime

is de�ned as the voter's age subtracted from 18 years. Education is measured as the

voter's education level � classi�ed in six categories:

1) No High-School,

2) Some High-School,

3) High-School Degree,

4) Some College,

5) College Degree, and

6) Postgraduate Level.

Achen argues that the age of voters (systemtime) shows the strength of PID

while voters' education level are attributes in understanding campaign information.4

Based on the availability of data, the theoretical model (9.3.1) is used to estimate

the following double-probit model:

Pr (vote = 1) = Φ (λ0 + λ1 [2Φ (β1systemtime+ β2education)− 1]) , (9.3.4)

4Note, there is no proxy measure used for trusted source. Therefore qn+1 is dropped from
equation (9.3.1).
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where the empirical component, Φ (β1systemtime+ β2education), is theoretically

equivalent to the Bayesian learning procedure Φ
(
hcδ̂n+hτ cn+1+hqqn+1

(hc+hτ+hq)
1/2

)
, and λ0 and λ1

are equivalent to −c and α in equation (9.3.1), respectively.

To test the EITM relation, Achen (2006) uses voter turnout data from the 1998

and 2000 Current Population Surveys (CPS) and the Annenberg 2000 presidential

election study. Contrasting the EITM-based model with traditional applied statis-

tical models in the existing literature, he �nds that his models have a better �t.

Equally important, when the focus turns to the parameters in Achen's model he

�nds the empirical estimates are consistent with the theoretical predictions of the

model (see (9.3.1)). For example, he �nds that the estimated values of c and α range

between 1.212 and 2.424 and between 3.112 and 4.865, respectively. These values

are statistically indistinguishable from the values predicted in the model.

9.4 Leveraging EITM and Extending the Model

Achen uses the behavioral concepts of rational decision making and learning. His be-

havioral analogues are basic utility maximization and Bayesian learning respectively.

He links these behavioral analogues with the applied statistical analogue for discrete

choice: probit. To accomplish this EITM linkage he assumes that the voting deci-

sion and Bayesian learning are normally distributed events. With that assumption

in place the formal model is tested using two probit regressions simultaneously.

Achen's EITM model can be leveraged in a number of ways. One of the more

important extensions is to take advantage of the dynamic properties in his theory

and model. Retrospective evaluations are assumed in the model but there is no spec-

i�cation or test on how long these evaluations persist or how long a voter's memory

lasts. We know, for example, that in matters of policy, retrospective judgments by

the public can have a profound in�uence on policy e�ectiveness. Equally important,

there are analogues for persistence that can be linked to a formal extension of the

model.

9.5 Appendix

The applied statistical analogue for discrete choice is located in Chapter 8. In this

appendix we provide some background on distribution functions since they aid in

prediction. For the formal tools we include a short presentation of Bayesian updating

methods to estimate the mean and variance.
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9.5.1 Empirical Analogues

Probability distributions are typically de�ned in terms of the probability density

function (PDF). In probability theory, a PDF of a random variable describes the

relative frequencies (or likelihood) of di�erent values for that variable. If the ran-

dom variable (X) is discrete, the PDF provides the probability associated with each

outcome:

f(x) = Prob(X = x)

If the random variable (X) is continuous, the probability associated with any single

point is zero. In this case, the PDF is expressed in terms of an integral between two

points:

f(x) = Prob(a ≤ X ≤ b) =

ˆ b

a

f(x)dx

The PDF of a continuous variable is a continuous function of f(x), and the area

under f(x) provides the probability for a range of outcomes. Note that probabilities

are always positive or zero and that they should total 1 (i.e.,
∑

X f(x) = 1 (if X is

discrete) and
´ +∞
−∞ f(x) = 1 (if X is continuous)).

The cumulative distribution function (CDF) gives the probability that a random

variable (X) takes a value of less than or equal to x:

F (x) = Prob(X ≤ x)

Conceptually, the CDF accumulates the probabilities (PDF) of single events xj such

that xj ≤ x. For a discrete distribution, the CDF is:

F (x) = Prob(X ≤ x)

= Prob(X = x1) + Prob(X = x2) + ...+ Prob(X = xj)

= f(x1) + f(x2) + ...+ f(xj)

=
∑
X≤x

f(x)
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For a continuous distribution, the CDF is:

F (x) = Prob(X ≤ x)

=

ˆ x

−∞
f(t)dt

and f(x) =
dF (x)

dx

Note that F (x) has the following properties: (1) 0 ≤ F (x) ≤ 1, (2) If x2 > x1, then

F (x2) ≥ F (x1), and (3) F (−∞) = 0 and F (+∞) = 1.

The Normal PDF and CDF

In the following Figure 9.5.1, we plot the normal PDF and CDF.

Figure 9.5.1: Normal PDF and CDF

The CDF of the standard normal distribution is denoted with the capital Greek

letter Φ. For a generic normal random variable with mean of u and variance of σ2,

its CDF is denoted as Φ(x−u
σ

)= F (x; u; σ2). An important property of the standard

normal CDF is 2-fold rotationally symmetric around point (0, 1
2
): Φ(−x) = 1−Φ(x)
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Details on the Achen (2006) Application

Achen uses the statistical concept of CDF from a normal distribution to derive the

utility function for voting as expressed in equation (9.2.7). Speci�cally, using the

notations discussed above, F (un+1 = 0|I) gives the CDF that the voter decided to

vote when the PID takes a value of less than or equal to zero. Since Achen argues

that the voter only vote for the party valued higher than another (i.e., un+1 > 0) , the

CDF of F (0|I) (equation (9.2.4)) gives the probability that voter is making incorrect

decision. Adding the assumption that un+1 is normally distributed, he then derived

the utility of voting as in equation (9.2.7).

9.5.2 Formal Analogues

Bayesian statistics is a system for describing uncertainty using the language of prob-

ability. Bayesian methods start with existing �prior� beliefs and update these beliefs

using new sample information to give �posterior� beliefs.

To derive the utility function of voting with the feature of Bayesian learning

(shown in equation (9.2.13)), Achen applies Bayesian updating methods to the utility

function of equation (9.2.7). In more detail, Achen uses Bayesian methods to update

voter's prior belief that the PID (un+1) is a normal distribution. This prior belief

(distribution) expresses the uncertainty about the mean value of the process. The

mean of this prior is the mean of the process, while the variance is the process

variance divided by the sample size. Voters update the prior belief (distribution)

to generate the posterior distribution based on the sample of new information when

they becomes available. The updated distribution can be characterized in terms

of its mean and variance (which are referred to as posterior mean, and posterior

variance, respectively). The required formulations to obtain the posterior mean (µ′′)

and posterior variance (σ′′2) from Bayesian updating scheme with a prior normal

distribution can be expressed as:

µ′′ =

1
σ′2
µ′ + 1

σ2/n
x̄

1
σ′2

+ 1
σ2/n

,

σ′′2 =
1

1
σ′2

+ 1
σ2/n

.

where x̄ =sample mean, s2 = σ2 for a sample variance with a su�ciently large

sample; µ′ is the prior mean, and σ′2 is the prior variance. Equation (9.5.6) is the
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basis for expression (9.2.11), while equation (9.5.7) is for expression (9.2.12).



Chapter 10

International Con�ict and

Cooperation

This chapter explicates the EITM linkage between the behavioral concepts of deci-

sion making, bargaining, and strategic social interaction and the empirical concept

of discrete choice with random utility.1 This linkage � termed quantal response

equilibrium (QRE) � was developed in a series of papers by McKelvey and Palfrey

(1995, 1996, 1998). The approach has also been used in studies of political choice

(Carson, 2003), international con�ict (Signorino and Tarar 2006), and other areas

(e.g., McLean and Whang 2010; Carter 2010; Helmke 2010). Carson (2003) exam-

ines the likelihood that Congress members choose to seek reelection or retire based

on the decisions of potential challengers. Signorino and Tarar (2006) study the de-

terminants of extended immediate deterrence in the context of strategic interaction

between attackers and defenders.

An early and important application of QRE is Signorino's (1999) work on in-

ternational con�ict and cooperation. Signorino used QRE and contrasts it with

stand alone discrete choice estimation. In particular, Signorino demonstrates that

discrete choice estimations, such as logit and probit or Heckman selection models,

do not incorporate a situation where the observed outcome, followed by an agent's

choice, depends on decisions strategically made by another. Ignoring the possibility

of strategic decision makings, these non-strategic choice models can lead to incorrect

1Note, in Chapter 7 social interaction was non-strategic � one group accepted information from
another group. The form of social interaction in this chapter is strategic: taking other decision-
makers choice of action as given, a decision-maker chooses the best action (among all the actions
available) in accordance with her preferences. This form of social interaction requires the use of
game theory.
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inferences (Signorino 2002; Signorino and Yilmaz 2003).2

Leblang's (2003) study of speculative currency attacks is used as an example. Tra-

ditional studies on speculative exchange rate attacks examine the role of economic

and political conditions that lead a country to be more or less likely to experience

currency attack by international �nancial markets (Krugman 1979; Eichengreen,

Rose, and Wyplosz 1996; Obstfeld 1994; Drazen 2000; Grier and Lin 2010). Leblang

re�nes these arguments and suggesets that currency crises may not merely depend

on domestic conditions in an economy. Instead the observed outcome of currency

attack can also be the result of strategic interaction between speculators and domes-

tic government. Speculators are likely to attack a currency if the policymakers are

unwilling and unable to defend the currency peg. Yet, if speculators expect that the

government is willing and able to defend its currency peg, they would not attack

the currency in the �rst place since the expected cost of initiating the attack is high

enough. The exchange rate status quo prevails. In sum, the relations and reac-

tions Leblang discusses involve behavioral concepts � decision making, bargaining,

strategic social interaction and nominal choice.

10.1 Step 1: Relating Decision Making, Bargain-

ing, Strategic Social Interaction, and Nominal

Choice

The concepts decision making, bargaining, strategic social interaction and nominal

choice are related in the following way. Leblang (2003) assumes there are two play-

ers in an economy: international �nancial markets (markets) and policymakers in

government (governments). The model can be summarized in Figure 10.1.1. The

�nancial markets have two choices: (1) they can initiate a speculative attack against

a currency peg, or (2) they can choose not to attack. Ifmarkets choose not to attack,

then the exchange rate situation will remain status quo (SQ) in the economy and the

game is over. On the other hand, if markets choose to attack, then governments

must choose either devaluing the currency (DV ) or defending the currency peg (DF ).

2Along the same lines, Bas, Signorino, and Walker (2008:22) argue that �the 'indirect' statistical
tests of formal models generally fail to properly characterize the hypothesized relationships in
statistical testing.�
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Figure 10.1.1: Extensive-Form Game of Currency Attacks

Figure 10.1.2: Extensive-Form Game with True Utility
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10.2 Step 2: Analogues for Decision Making, Bar-

gaining, Strategic Social Interaction, and Nom-

inal Choice

The model assumes players are concerned about the utility over each outcome (See

Figure 10.1.2). Let the markets' utility for SQ, DV , and DF be de�ned as UM (SQ),

UM (DV ) , and UM (DF ), where UM (·) represents the utility function of each ob-

served outcome for markets. We also de�ne UG (DV ) and UG (DF ) as the utility of

devaluation and currency defense for governments, respectively.

Leblang (2003) assumes the true utility for an outcome for each player i can

be represented as consisting of an observable component Ui (m) and an unobserv-

able (or private) component πim, where i ∈ {markets, governments}, and m ∈
{SQ,DV,DF}. πim is de�ned as a random variable which has a normal distribution

with mean 0 and variance σ2 (i.e., πim ∼ N (0, σ2)). For instance, we interpret πMDV
as private information for devaluation for the markets but it is unobservable to the

governments and to the analysts: the governments and analysts can only know a

statistical distribution of πMDV .

Following Signorino (2003), Leblang derives equilibrium choice probabilities for

each of the actions in the model. Let pAK denote the probability markets attack the

currency, and pDF represents the probability governments defend the currency peg.

The government decision calculus is as follows: governments defends the currency

peg only if the expected utility of defending the currency is larger than the expected

utility of devaluation.

We can derive the corresponding probability of defending the currency as:

pDF = Φ

(
UG (DF )− UG (DV )

σ
√

2

)
, (10.2.1)

and the corresponding probability of devaluation as pDV = 1 − pDF , where Φ (·) is

the standard normal cumulative distribution function (CDF).3

Similarly, markets attack the currency only if the expected utility of attacking

the currency is greater than the expected utility of status quo. The corresponding

3See the Appendix for the theoretical background and the estimation procedure in detail.
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probability of attacking against the currency peg is:

pAK = Φ

(
pDVUM (DV ) + pDFUM (DF )− UM (SQ)

σ
√

1 + p2
DV + p2

DF + 1

)
, (10.2.2)

and the corresponding probability of the economic status quo is pSQ = 1− pAK .

10.3 Step 3: Unifying and Evaluating the Analogues

Given the derivation of equations (10.2.1) and (10.2.2), we can construct a likelihood

equation based on these probabilities to obtain maximum likelihood estimates. For

each observation n, let yAK,n = 1 if markets attacks against the currency peg in

observation n, and zero if the currency crisis remains in a status quo outcome. Let

yDF,n = 1 if governments defends the currency peg, and zero otherwise. The log-

likelihood function to be maximized is:

lnL =
N∑
n=1

[(1− yAK,n) ln pSQ + yAK,n (1− yDF,n) (ln pAK + ln pDV )

+yAK,nyDF,n (ln pAK + ln pDF )] , (10.3.1)

where N is the total number of observations.

With a sample of 90 developing countries, in the period 1985-1998, Leblang de-

�nes a set of factors determining the market's utility and the government's utility

according to the previous studies in the literature. For the market's utility, Leblang

considers the following factors which a�ect the probability of a speculative attacks:

expansionary monetary policy, overvaluation, large external imbalances, banking sec-

tor conditions, and the capital account conditions. For the government's utility,

Leblang groups the factors into two areas: 1) the factors that in�uence the will-

ingness to defend the currency peg, and 2) the factors that re�ect the ability to

defend.

The factors that in�uence the willingness to defend are: electoral timing, con-

stituent interests, and partisanship. The factors re�ecting the ability to defend are:

foreign exchange reserves, interest rates, capital controls, and policy decisiveness.

Figure 10.3.1 shows the general speci�cation of the utilities employed in the data

analysis. We also summarize the estimation system, called a strategic probit model,

as follows:
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Figure 10.3.1: Leblang (2003) Model with Regressors and Parameters

UM (SQ) =
K∑
k=1

βMSQ,kx
M
SQ,k (10.3.2)

UM (DV ) = βMDV,0 (10.3.3)

UM (DF ) = βMDF,0 (10.3.4)

UG (DV ) = βGDV,0 (10.3.5)

UG (DF ) =
H∑
h=1

βGDF,hx
G
DF,h, (10.3.6)

where:

• βMDV,0, βMDF,0, and βGDV,0 are constant terms.

• XM
SQ = [Captial controlt−1, Log(reserve/base money)t−1, Real exchange rate

overvaluation, Domestic credit growtht−1, US domestic interest ratet−1, Exter-

nal debt servicet−1, Contagion, Number of prior speculative attacks], X
G
DF =

[Uni�ed government, Log(exports/GDP)t−1, Campaign and election period,

Post-election period, Right government, Real interest ratet−1, Capital controlst−1,

Log(reserves/base money)t−1],

• βMSQ and βGDF are the corresponding vector of coe�cients on MM
SQ and MG

DF ,

respectively.

For the speci�cation of the dependent variable, there are several ways that the de-

pendent variable can be speci�ed in the dataset. These include:

• y = 1 if there is no currency attack (SQ),
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• y = 2 if the government devalues the currency in response to an attack (DV),

• y = 3 if the government defenses the currency in response to an attack (DF).

We estimate the model using the games package in the R program.4 The result

of the strategic probit model is provided in Table 10.1. Leblang �nds speculative

attacks are more likely to occur when the economic fundamentals, such as, relative

reserves, overvaluation and domestic credit are weak, or when there is uncertainty in

the governmen's ability to defend the currency peg re�ected by institutional, electoral

and partisan incentives.

10.4 Leveraging EITM and Extending the Model

Signorino (1999, 2003) introduces a method in unifying theory and empirical test

in the context of game-theoretical framework. Leblang (2003) applies the uni�ed

framework to test the model of speculative currency attacks. He uses the behavioral

concepts of rational decision making with strategic interaction. His behavioral ana-

logue is expected utility maximization and game theory. This behavioral analogue

is linked with an applied statistical analogue for discrete choice: probit model with

random utility � QRE.

Leblang's EITM model can be leveraged in several ways. One of the extensions is

to include monetary theory in the model since exchange rate policy largely depends

on the stance of monetary policy making. Further, because the current model is

based on a bilateral strategic interaction between speculators and the government a

revised model could incorporate self-ful�lling expectations to allow for the possibility

of currency crisis contagion (Keister 2009).

10.5 Appendix

The tools in this chapter are used to establish a transparent and testable relation

between strategic social interaction and discrete choice. The formal tools include a

presentation of basic game theory. The applied statistical tools are slightly di�erent

in that the estimation method already incorporates fusing game theory with discrete

choice estimation � Quantal Response Equilibrium (QRE). The last section of this

appendix provides the code and data in in applying QRE to Leblang (2003).

4The games package is written by Brenton Kenkel and Curtis S. Signorino (See Kenkel and
Signorino 2012).
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Figure 10.5.1: Two-player, Three-Outcome Game

10.5.1 Formal Analogues

A Simple Game Theoretic Modeal

This appendix describes a basic idea of strategic choice analysis using a simple strate-

gic model with two players and three observable outcomes. In this model, as depicted

in Figure 10.5.1, there are two players, a and b, who make one of the following two

choices: left or right. Assuming player a is a �rst-mover (or leader) and player b is

a second-mover (or follower), who must choose either left (L) or right (R). If player

a chooses L, the game is over and player b does not choose. Then the �nal outcome

is: L. On the other hand, if player a chooses R, then player b chooses either left (l)

or right (r). There are two possible outcomes in this case: Rl or Rr, respectively.

Assuming players are rational and well-informed, we determine via backward

induction the equilibrium of a �nite extensive game � the subgame perfect Nash

equilibrium (SPE). We �nd which the optimal decision players a and b choose by

starting at the end of the game (the end decision nodes) and work backward.

Consider a two-player, three-outcome game in Figure 10.5.1. Given the three

possible outcomes, suppose player a's preferences are Rl � L � Rr, and player b's

are Rl � Rr.5 We start with the decision made by player b since she makes the �nal

decision in the game. If player a chooses R, player b will choose l over r as player

b prefers the outcome of Rl to Rr. When player a is well-informed of player b's

decision, player a will evaluate the outcome between L and Rl and make a decision

of choosing R at the beginning. Therefore, the subgame perfect Nash equilibrium is

Rl, where a chooses R and b chooses l as their optimal decision and they will not

deviate from their optimal decision. We illustrate this result in Figure 10.5.2(a). We

5We denote the symbol � to mean that one option (or bundle) is strictly preferred to another.
For example, x � y implies that x is preferred to y. Furthermore, x � y � z implies that x � y
and y � z, and x � z according to the property of transitivity.
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Figure 10.5.2: Subgame Perfect Equilibrium in a Two-Player, Three-Outcome Game
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Figure 10.5.3: A Two-Player, Three-Outcome Game with Utility Functions

also present other possible SPE when we alter the preferences for players a and b in

Figures 10.5.2(b) and 10.5.2(c).

To simplify preference description, we use a utility function U (·) to assign a

number to every possible outcome such that more-referred outcomes get assigned

larger values than less-preferred outcomes. According to our previous example, player

b prefers Rl to Rr if and only if the utility of Rl is larger than the utility of Rr:

in symbols, Rl � Rr if and only if Ub (Rl) > Ub (Rr), where Ui (·) represents the

utility function for player i. Similarly, we describe player a's preferences in terms

of utility as follows: Ua (Rl) > Ua (L) > Ua (Rr) . We revise the extensive game in

Figure 10.5.3.

Quantal Response Equilibrium (QRE)

The assumptions of rationality and perfect information provide greater ease in com-

putation. The (Nash) equilibrium can be derived with certainty. However, Signorino

(1999: 281) argues that, �[t]raditional equilibrium concepts prove problematic in sta-

tistical analysis primarily because of the zero-likehood problem.� One solution to this

challenge can be found in McKelvey and Palfrey (1995, 1996, 1998). They develop

a random utility model for normal form and extensive form games. They assume

that agents' utilities and best responses are no longer deterministic. Instead, certain

stochastic processes are assumed in utility and best response functions so that the

equilibrium derived from the model can have meaningful statistical properties. As

a result, the equilibrium can be estimated empirically. This equilibrium is called

the quantal response equilibrium (QRE) � a game-theoretic equilibrium under the

assumption of random utility. McKelvey and Ralfrey (1995) use maximum likelihood

estimation to test the goodness of �t of the model using a variety of experimental
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data.

Signorino (1999) extends QRE. He derives a statistical strategic discrete choice

model and applies it to a study of international con�ict. In contrast to prior work

in this research area, he incorporates the structure of the strategic interdependence.

More importantly, Signorino's statistical models are directly derived from formal

game-theoretic models. This work �ts within the EITM framework since every strate-

gic model is associated with a speci�c game form and solution concept, we introduce

a two-player, 3-outcome game.6

We noted earlier that rationality and perfect information assumptions leave �zero-

likelihood� for statistical analysis. Signorino (1999, 2003) relaxes these assumptions

and assumes one of the two forms of uncertainty: 1) agent error and 2) private in-

formation, for strategic choice estimations. The assumptions of uncertainty impose

a certain structure of the stochastic process, a process which is crucial for the esti-

mation of utility parameters in the game-theoretic model. In the case of agent error,

each player's utility over outcomes is �xed and observable for other players. How-

ever, player i might not be able to choose the utility-maximizing option correctly.

There exists an unobservable stochastic stock, αi, which can lead player i to pick an

alternative option, where the stochastic shock is assumed to be either normally or

logistically distributed.

Figure 10.5.4 illustrates the basic structure of a strategic choice model with agent

error. We assume player a chooses L and R with the probability of pL and pR,

respectively. Similarly, the probabilities for player b to choose l and r are pl and pr,

respectively. Each player's utility depends on the strategic outcome in the game. We

also assume that the utility of each outcome m for player i is a linear function of X i
m

explanatory variables:

Ui (m) = X i
mβ

i
m,

where i ∈ {a, b}, βim is a vector of coe�cient to be estimated, and m ∈ {L,Rl, Rr}
is the possible outcome in the game. Each player chooses an option to maximize her

expected utility, E [Ui (m)].

Given that player a chooses R, the expected utility for player b to choose l is

E [Ub (Rl)] = Ub (Rl) = Xb
Rlβ

i
Rl. Similarly, the expected utility for player b to choose

r is E [Ub (Rr)] = Ub (Rr) = Xb
Rrβ

i
Rr when player a's action is R. On the other hand,

player a's expected utility of choosing R depends on the action from player b. It can

be calculated as a weighted average of utilities from two player b's actions, that is,

6We refer readers to Signorino (1999, 2003) and Signorino and Kenkel (2012) for other strategic
models.
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E [Ua (R)] = plUa (Rl) + prUa (Rr) = plX
a
Rlβ

a
Rl + prX

a
Rrβ

a
Rr. The expected utility of

choosing L for player a is E [Ua (L)] = Xa
Lβ

a
L.

To determine the probabilities that players a and b choose speci�c actions, we

assume that there exists a stochastic shock αi for player i, which is normally dis-

tributed. In this case, given player a's action is R, player b chooses r over l with the

following ex ante probability:

pr = Prob
(
E [Ub (Rr)] + αbr ≥ E [Ub (Rl)] + αbl

)
= Prob

(
Xb
Rrβ

b
Rr + αbr ≥ Xb

Rlβ
b
Rl + αbl

)
= Prob

(
αbRl − αbRr ≤ Xb

Rrβ
b
Rr −Xb

Rlβ
b
Rl

)
= Φ

(
Xb
Rrβ

b
Rr −Xb

Rlβ
b
Rl

σ
√

2

)
, (10.5.1)

where αbr and α
b
l are distributed as normal with mean 0 and variance σ2, and Φ (·)

is the standard normal cumulative distribution function (CDF).7 The probability for

player b to choose l is pl = 1− pr. We can apply a similar method for computing the

probabilities of player a's actions. The ex ante probability for player a choosing R

over L is:

pR = Prob (E [Ua (R)] + αaR ≥ E [Ua (L)] + αaL)

= Prob
(
pblUa (Rl) + pbrUa (Rr) + αaR ≥ E [Ua (L)] + αaL

)
= Prob

(
αaL − αaR ≤ pblUa (Rl) + pbrUa (Rr)− Ua (L)

)
= Prob

(
αaL − αaR ≤ pblX

a
Rlβ

a
Rl + pbrX

a
Rrβ

a
Rr −Xa

Lβ
a
L

)
= Φ

(
αaL − αaR ≤ pblX

a
Rlβ

a
Rl + pbrX

a
Rrβ

a
Rr −Xa

Lβ
a
L

σ
√

2

)
. (10.5.2)

It follows that the probability of taking option L is pL = 1− pR.
7The CDF of a random variable X is the probability that takes a value less than or equal to

x0, where x0 is some speci�ed numerical value of X, that is, Φ (X = x0) = Prob (X ≤ x0). For
a variable X, which follows the normal distribution with mean µ and variance σ2, its probability
density function (PDF) is:

φ (X) =
1√

2σ2π
exp

(
− (X − µ)

2
/2σ2

)
,

and its CDF is:

Φ (X) =

ˆ X0

−∞

1√
2σ2π

exp
(
− (X − µ)

2
/2σ2

)
.

See the Appendix in Chapter 8 for a detailed discussion of probit and logit models and the Appendix
in Chapter 9 for a discussion of CDF's and PDF's.



CHAPTER 10. INTERNATIONAL CONFLICT AND COOPERATION 176

Figure 10.5.4: The Case of Agent Error

Assuming that there are N repeated plays in the game. In each play n, we de�ne

yan = 1 if the observable action of player a is R and yan = 0 if the observable action

is L. Similarly, we de�ne ybn = 1 if the observable action of player b is r and ybn = 0

if the observable action is l. We present the following likelihood function for all N

plays:

L = ΠN
n=1p

(1−yan)
L (pRpl)

yan(1−ybn) (pRpr)
yanybn . (10.5.3)

We can then maximize the log of the likelihood function (10.5.3) with respect to the

coe�cients βim:

lnL =
N∑
n=1

[(1− yan) ln pL + yan (1− ybn) (ln pR + ln pl) + yanybn (ln pR + ln pr)] .

(10.5.4)

Since the log-likehood function is non-linear, we do not obtain a closed-form solution

for βim. However, since the log-likelihood function is globally concave we can perform

numerical maximization. While we assume the stochastic shocks α's are normally

distributed for probit-type maximum likelihood estimations, the stochastic shocks

can also be distributed as Type I Extreme Value for logistic-type estimations.8

8For the logistic-type estimation, we can maximize the log-likelihood function (10.5.4) according
to the following probabilities of actions for player b:

pr =
eUb(Rr)

eUb(Rl) + eUb(Rr)

and:

pl =
eUb(Rl)

eUb(Rl) + eUb(Rr)

For player a:

pL =
eUa(L)

eUa(L) + eplUa(Rl)+prUa(Rr)



CHAPTER 10. INTERNATIONAL CONFLICT AND COOPERATION 177

Figure 10.5.5: The Case of Private Information

Next, instead of relaxing the assumption of perfect rationality in the case of agent

error model, Signorino (2002) suggests an alternative approach to include an unob-

servable private component or shock (denoted as πi), which limits the analyst or the

player to evaluate the other player's preferences over outcomes. Figure 10.5.5 sum-

marizes the basic concept of private information. We now calculate the probabilities

of actions for both players according to their expected utilities. For player b, the ex

ante probability of choosing r is:

pr = Prob
(
Ub (Rr) + πbRr ≥ Ub (Rl) + πbRl

)
= Prob

(
πbRl − πbRr ≤ Ub (Rr)− Ub (Rl)

)
= Prob

(
πbRl − πbRr ≤ Xb

Rrβ
b
Rr −Xb

Rlβ
b
Rl

)
= Φ

(
Xb
Rrβ

b
Rr −Xb

Rlβ
b
Rl

σ
√

2

)
.

For choosing l, the probability is pl = 1 − pr. On the other hand, when player a

chooses R, the expected utility is EUa (R) = pbl (Xa
Rlβ

a
Rl + πaRl) + pbr (Xa

Rrβ
a
Rr + πaRr) .

Therefore, player a's probability for choosing R over L is:

pR = Prob (EUa (R) ≥ EUa (L))

= Prob (pl (X
a
Rlβ

a
Rl + πaRl) + pr (Xa

Rrβ
a
Rr + πaRr) ≥ Xa

Lβ
a
L + πaL)

= Prob (πaL − plπaRl − prπaRr ≤ plX
a
Rlβ

a
Rl + prX

a
Rrβ

a
Rr −Xa

Lβ
a
L)

= Φ

(
plX

a
Rlβ

a
Rl + prX

a
Rrβ

a
Rr −Xa

Lβ
a
L

σ
√

1 + p2
l + p2

r

)
,

and:

pR =
eplUa(Rl)+prUa(Rr)

eUa(L) + eplUa(Rl)+prUa(Rr)
.
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Figure 10.5.6: Identi�ed Model with Regressors and Parameters

and the probability for L is pL = 1−pR, where πim is normally distributed with mean

0 and variance σ2.

While the strategic systems presented in Figures 10.5.4 and 10.5.5 are theoreti-

cally sound, they present an identi�cation problem (Lewis and Schultz 2003). Fol-

lowing traditional practice it is necessary to impose some exclusion restrictions in

the system. Kenkel and Signorino (2012) suggest that one way to identify a strategic

model is to set each player's utility to zero for one of the strategic outcomes.9 In

this particular two-player, three-outcome model described in Figure 10.5.3, the iden-

ti�cation condition can be satis�ed when Ua (Rl) = 0 for player a and Ub (Rl) = 0

for player b . Figure 10.5.6 illustrates a possible structure of a system which satis-

�es the identi�cation condition for estimating the model. We impose the following

speci�cation:

Ua (L) = βaL,0 + βaL,1x1

Ua (Rl) = 0

Ua (Rr) = βaRr,0 + βaRr,1x1 + βaRr,2x2

Ub (Rl) = 0

Ub (Rr) = βbRr,0 + βbRr,2x2 + βbRr,3x3,

and de�ne:

Xa
L = [1, x1]

Xa
Rr = [1, x1, x2]

Xa
Rr = [1, x2, x3]

9Kenkel and Signorino (2012) indicate that, in general, a necessary condition for identi�cation
in a strategic model is that no regressor, including the constant term, is included in all of a player's
utility functions of the strategic outcomes (Lewis and Schultz 2003).
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βaL =
[
βaL,0, β

a
L,1

]
βaRr =

[
βaRr,0, β

a
Rr,1, β

a
Rr,2

]
βbRr =

[
βbRr,0, β

b
Rr,2, β

b
Rr,3

]
.

Details on the Leblang (2003) Application

In 2001, Signorino developed STRAT, a program for analyzing statistical strate-

gic models written in Gauss language. Since then, Signorino and Kenkel further

developed the program and implemented a new package, called games, in R lan-

guage. The games package provides estimation and analysis for di�erent forms of

game-theoretic models. In this appendix, we illustrate the usage of egame12 in

the package for the estimation of the two-player, three-outcome model based on the

Leblang's (2003) estimation results as an example.

Here we present the estimation procedure used in the chapter. According to

Figure 10.3.1, the speci�cation of the model is:

UM (SQ) =
K∑
k=1

βMSQ,kx
M
SQ,k (10.5.5)

UM (DV ) = βMDV,0 (10.5.6)

UM (DF ) = βMDF,0 (10.5.7)

UG (DV ) = βGDV,0 (10.5.8)

UG (DF ) =
H∑
h=1

βGDF,hx
G
DF,h, (10.5.9)

where:

• βMDV,0, βMDF,0, and βGDV,0 are constant terms.

• XM
SQ = [Captial controlt−1, Log(reserve/base money)t−1, Real exchange rate

overvaluation, Domestic credit growtht−1, US domestic interest ratet−1, Exter-

nal debt servicet−1, Contagion, Number of prior speculative attacks], X
G
DF =

[Uni�ed government, Log(exports/GDP)t−1, Campaign and election period,

Post-election period, Right government, Real interest ratet−1, Capital controlst−1,

Log(reserves/base money)t−1],

• βMSQ and βGDF are the corresponding vector of coe�cients on MM
SQ and MG

DF ,

respectively.
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For the speci�cation of the dependent variable, there are several ways that the de-

pendent variable can be speci�ed in the dataset. These include:

• y = 1 if there is no currency attack (SQ),

• y = 2 if the government devalues the currency in response to an attack (DV),

• y = 3 if the government defenses the currency in response to an attack (DF).10

The games package also allows other speci�cations for de�ning the dependent vari-

able.11 To estimate the model using R, �rst-time R users need to install the games

package in R by typing:

install.packages("games", dependencies=TRUE)

R uses a speci�c package that can be linked to other packages. If the dependencies=TRUE

argument is speci�ed, then R uses the full capacity of the speci�c package by down-

loading and installing other packages. Then we load the games package from the

library by typing:

library("games")

Since the data set we use is in STATA format (Figure 10.5.7), we import the STATA

data �le (leblang2003y.dta) into R using a package called foreign. We �rst install

the foreign package by typing:

install.packages("foreign", dependencies=TRUE)

and then load the package:

library("foreign")

Now we can import the Leblang's data into R by typing:

leblang2003y.stata <- read.dta("file_path /leblang2003y.dta")

where file_path / is the location where the STATA �le is saved. After importing,

the data �le in R is now called leblang2003y.stata. We can view the data set as

presented in Figure 10.5.8 using the following command:

View(leblang2003y.stata)

10The data set can be downloaded from the website of Hobby Center for Public Policy at the
University of Houston. URL: http://www.uh.edu/class/hcpp/EITM/EITMBook.html.

11We refer interested readers to the tutorial of games packages by Signorino and Kenkel (2012).
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Figure 10.5.7: Leblang (2003) Data Set in STATA

Now estimate Leblang's model by typing:

m1 <- egame12(y ~ capcont + lreserves + overval + creditgrow + usinterest

+ service + contagion + prioratt - 1 | 1 | 1 | unifgov + lexports + preelec

+ postelec + rightgov + realinterest + capcont + lreserves,

data = leblang2003y.stata, link = "probit", type = "private")

where the result is saved as m1.

The command egame12 estimates a two-player, three-outcome extensive-form game.

y is the dependent variable which is de�ned as follows: y = 1 if the outcome = SQ,

y = 2 if the outcome = DV, and y = 3 if the outcome = DF. The �rst expression

after ~, that is, capcont + lreserves + overval + creditgrow + usinterest +

service + contagion + prioratt - 1, represents the linear model for estimating

the utility of the market when the situation is the status quo (i.e., UM (SQ) in

equation (10.5.5)).

The �minus 1� in the expression excludes model's constant term. The expression

�1� followed by the �rst vertical stroke represents the constant term for the market's
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Figure 10.5.8: Leblang (2003) Data Set in R
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utility when the government devalues the currency (i.e., equation (10.5.6)). Similarly,

another expression of �1� followed by the second vertical stroke presents the constant

term for the market's utility when the government defends the currency (i.e., equation

(10.5.7)).

Finally, the last expression after the third stroke presents the linear model for esti-

mating the government's utility in taking action to defend the currency. data is to

retrieve the data �le for the estimation. link de�nes the distribution of the stochas-

tic shocks in the game, where �probit� is set as the default for normally distributed

stochastic shocks, and �logit� can be imposed for the logistic distribution of the

stochastic shocks. type is determines if the stochastic structures fall under the as-

sumption of agent-error (�agent� as default) or private information (�private�). To

retrieve the result of the estimation, we type:

summary(m1)

Figure 10.5.9 shows the results in R which is equivalent to those in Leblang (2003).

Figure 10.5.10 depicts all codes for the estimation.
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Figure 10.5.9: Leblang's (2003) Results in R
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Figure 10.5.10: R Codes for Leblang's (2003) Results



Chapter 11

Social Behavior and Evolutionary

Dynamics

In this chapter we introduce an alternative way to create EITM linkages � Agent-

based modeling (ABM). ABM has been considered as a bottom-up approach model-

ing behaviors of a group of agents, rather than a representative agent, in a system.

One important element of ABM is that it allows the possibility of agents' interactions

in micro levels with the assumption of bounded-rationality or imperfect information.

Given agents' heterogenous characteristics and their interactions at the micro level,

researchers can simulate the system and observe changes in the macro level over time

according to the system-simulated data. As a result, the simulated data can be com-

pared with real-world empirical data so that researchers are able to make statistical

inferences.

While the example in this chapter is economic in nature, ABM has many other

uses in the social sciences. Consider voter turnout. Unlike the EITM approach

that Achen takes using Bayesian updating (as described in Chapter 9), Bendor,

Diermeier and Ting (2003) and Fowler (2006) use ABM. Bendor, Diermeir, and Ting

(2003) (hereafter BDT) set up a computational model by assuming that voters are

adaptively rational � voters learn to vote or to stay home in a form of trial-and-

error. Voters are reinforced to repeat an action (e.g., vote) in the future given a

successful outcome today. The reverse also holds. Based on the simulation with the

assumption of adaptive behavior, BDT �nd the turnout rate is substantially higher

than the predictions in rational choice models. This result can be observed even in

electorates where voting is costly. Fowler (2006) revises the BDT model by removing

the feedback in the probability adjustment mechanism and instead includes habitual

voting behavior. Fowler �nds his behavioral model is a better �t to the same data

186
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BDT use, but a point not to be lost is Fowler leverages the EITM approach to build

on BDT's model and test.

While there are various approaches of ABM,1 in this chapter, we present the

work of Arifovic (1994) on genetic algorithm (GA) learning. GA, developed by Hol-

land (1970), has been recognized as an important methodology for computational

optimization (Holland 1975; Goldberg 1989). It is used for solving optimal solu-

tions numerically in mathematical systems when deriving closed-form solutions is

technically di�cult.

ABM has also been used with cobweb models. Recall Cobweb models have been

used in the macro models. Muth (1961), for example, formulates the cobweb model

with rational expectations. 2 The seminal work of Arifovic (1994) investigates if the

macro-level stability condition (the cobweb theorem) is necessary for a stable cobweb

economy under GA. Arifovic simulates the cobweb model using the genetic algorithm

and compares the GA-simulated results with those based on adaptive learning mech-

anism and Wellford's experiments. The EITM linkage is that the behavioral concepts

� imitation, invention, communication and examination � are mimicked by the ge-

netic operators � reproduction, mutation, crossover and election, respectively, such

that the GA-simulated data are empirically compared with human-subject experi-

ments, and other forecasting mechanisms.

11.1 Step 1: Relating Elements of Social Interac-

tion: Imitation, Invention, Communication, and

Examination to Prediction

The GA, developed by Holland (1970), is considered one of the evolutionary algo-

rithms inspired by natural evolution with a core concept of �survival of the �ttest�.

The GA describes the evolutionary process of a population of genetic individuals

(called chromosomes) with heterogeneous beliefs in response to the rules of nature

(called �tness function). Genetic individuals form di�erent beliefs or take di�erent

actions based on their combination of genes (or bits). Based on the concept of �sur-

1See de Marchi (2005) for di�erent computational modeling approaches for details.
2Other studies investigate the stability conditions of the model using di�erent learning mecha-

nisms. See, for example, Evans and Honkapohja (1995, 1996), Brock and Hommes (1997), Heine-
mann (2001), Evans and Branch (2006), Granato, Guse, and Wong (2008). There is also work
involving experiments with human subjects (Holt and Williamil 1986; Wellford 1989; Hommes,
Sonnemans, Tuinstra, and van de Velden 2007).
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vival of the �ttest�, a genetic individual is more likely to be reproduced in the next

generation (that is, a higher survival rate) through a process of natural selection

if the individual performs �better� given the rules of nature. This process is called

�reproduction�. Further, in order to create new ideas or new actions in the next

generation, the possibilities of �mutations� (within-chromosome recombinations) or

�crossovers� (between-chromosome recombinations) are imposed in the evolutionary

process. The process of reproduction, and recombination will take place repeatedly

for each generation until certain conditions are met in the nature (for example, the

average �tness value for all genetic individuals in a generation converges to a certain

level).

While imposing the bounded rationality assumption has become a standard prac-

tice, researchers fail to relax the assumption of homogeneous agents due to the

di�culty of obtaining closed-form solutions. Arifovic considers an alternative by

simulating the cobweb model under genetic algorithm where �rms are allowed to

make heterogenous production decisions by imitating peers' successful production

strategies, and innovating new ideas on its own and with other �rms. Interestingly,

she �nds that the stability condition for convergence is not a necessary condition.

The GA converges to the rational expectations equilibrium (REE) for an expanded

parameter space.

The cobweb model, presented in the Appendix of Chapter 5, is an example of a

supply-demand model which demonstrates the dynamic process of a market economy.

The cobweb model is summarized in equation (5.5.10):

pt = A+Bpet + ξt,

where A = α−γ
β
, B = −λ

β
, and ξt =

(εdt−εst)
β

. The equation shows that the expected

price level pet at time t formed at t − 1 determines the actual price level pt at time

t. Assuming that pet is replaced with pt−1, in the long run, the price level pt is in a

stationary equilibrium.3

Arifovic (1994) uses the cobweb model and assumes each �rm i chooses a pro-

duction level, qi,t, to maximize its expected pro�t πei,t. This calculation is based on

the production cost function Cit (qit) and the expectations of the market price P e
t

that will prevail at time t. Formally, this production level can be expressed in the

following way.

3pt converges to p
∗ as t→∞, provided the ratio of supply and demand slopes are less than one

(i.e., λ < β). However, if the ratio is larger than one, the price level diverges away from its long
run equilibrium. This is called the cobweb theorem (Ezekiel 1938).
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First, the quadratic cost function for �rm i is:

Cit = aqit +
1

2
bmq2

it, (11.1.1)

where a, b > 0, Cit represents the cost of production given the level of output qit at

time t, and m is the number of �rms in the market. Firm i's expected pro�t as the

di�erence between expected total revenue and total cost:

πeit = P e
t qit − Cit (qit)

= P e
t qit − aqit −

1

2
bmq2

it, (11.1.2)

where P e
t is the expected price of the good in the market at time t. Each �rm

maximizes the expected pro�t function by setting the level of production qit. The

�rst order condition can be written as:

∂πeit
∂qit

= 0

⇒ P e
t − a− bmqit = 0.

The following optimal production level for �rm i based on the �rst order condition

is:

qit =
P e
t − a
bm

. (11.1.3)

Assuming all �rms are identical in the market, such that qit = qt, we have:

Qt =
∑m

i=1 qit = mqt. We can derive the market supply curve by summing up m

�rms' optimal output level from equation (11.1.3):

Qt =
m∑
i=1

qit

= mqt =
(P e

t − a)

b
. (11.1.4)

To determine the price level in the economy, we assume a linear market demand

curve:

Pt = γ − θQt, (11.1.5)

where Qt =
∑m

i=1 qit is the total output demanded in the market. Finally, one can

derive the market equilibrium of price level by equating market demand (11.1.5) and
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market supply (11.1.4):

γ − Pt
θ

=
P e
t − a
b

⇒ Pt =
γb+ aθ

b
− θ

b
P e
t . (11.1.6)

Equation (11.1.6) represents the cobweb model in Arifovic (1994). This expression is

equivalent to equation (5.5.10). According to the Cobweb theorem, the price level in

the model converges to the REE in the long run (i.e., P e
t = Pt) only if θ

b
is less than

1. If θ
b
> 1, the model will be unstable and the sequence of market prices diverge

away from the equilibrium.

To investigate whether this particular stability condition is a necessary condition

for convergence under a genetic algorithm, Arifovic (1994) compares the market

behavior in the genetic environment with three additional learning algorithms as

well as the cobweb experiments (Wellford 1989).4 Those three learning algorithm

are:

• Static expectations (i.e., P e
t = Pt−1),

• Simple adaptive expectations by averaging the past prices
(
P e
t = 1

t

(∑t−1
s=0 Ps

))
from the initial period up to time t,5 and

• Expectations formed by least squares updating mechanism.6

11.2 Step 2: Analogues for Social Interaction and

Prediction

Arifovic (1994) simulates the cobweb model based on three basic genetic operators

in the GA simulations: (1) reproduction, (2) mutation, and (3) crossover. She also

introduces a new operator, called election, in the simulations. We describe the genetic

operators and the procedure of the GA in detail in the Appendix of this chapter.

4The following stability conditions hold:

• Static expectations: the model is stable only if θ/b < 1.

• Simple adaptive expectations: the model is stable if θ/b < 1 and θ/b > 1 (See Carlson 1968).

• Least squares learning: the model is stable only if θ/b < 1 (See Bray and Savin 1986).

5This expression is similar to equation (5.5.22) where the current price level is a average of all
price levels observed in the past with an equal weight.

6See the Appendix of Chapter 6 for details.
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Reproduction is a genetic operator in which an individual chromosome is copied

from the previous population to a new population: agents imitate the

strategies from better-performing agents.

Mutation is a genetic operator in which one or more gene within an individual

chromosome changes value randomly: agents may change their strategies suddenly

through innovations.

Crossover is the third basic genetic operator and the crossover which occurs when

two randomly drawn chromosomes exchange parts of their genes: agents

work with others to innovate or develop a new strategy.

Election is introduced by Arifovic (1991, 1994). It is an operator to �examine�

the �tness of newly generated (or o�spring) chromosomes and then compare them

with their parent chromosomes (the pair of chromosomes before crossover). Both

o�spring chromosomes are elected to be in the new population at time t+ 1 if their

potential �tness values evaluated at time t is higher than their parents' �tness values.

However, if only one new chromosome has a higher �tness values than their parents,

the one with lower value will not enter the new population, but one of the parents

with a higher values stays in the new population. If both new chromosomes have

lower values than their parents, they cannot enter but their parents stay in the new

population.

One can see how the election operator can apply to many dynamic processes

involving the change and replacement of the status quo. Arifovic (1994) goes further

and interprets this operator as an evaluation of new proposed strategies. Only those

promising new ideas can be implemented in the production process. Combining the

�rst three basic GA operators (reproduction, crossover and mutation) with a new

election operator, Arifovic considers this simulation process as the augmented GA

approach.

We simulate the model using the basic GA approach (i.e., without the election

operator) and the augmented GA approach (that is, with election operator) according

to the values of parameters suggested in Arifovic (1994). In particular, we focus on 2

cases: 1) the parameter values of a stable cobweb model, and 2) those of an unstable

cobweb model used in Wellford's (1989) experiments.

Table 11.1 presents the numerical parameters for the simulations. For the case of

the stable cobweb model, we assign θ = 0.0152 and b = 0.016, such that θ
b

= 0.95 < 1.

On the other hand, for the unstable case, the ratio of supply and demand slopes is
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Stable Case Unstable Case
Parameters

(
θ
b
< 1
) (

θ
b
> 1
)

γ 2.184 2.296
θ 0.0152 0.0168
a 0 0
b 0.016 0.016
m 6 6
P ∗ 1.12 1.12

Q∗=mq∗ 70 70

Table 11.1: Cobweb Model Parameters

Set 1 2 3 4 5 6 7 8
Crossover rate: κ 0.6 0.6 0.75 0.75 0.9 0.9 0.3 0.3
Mutation rate: µ 0.0033 0.033 0.0033 0.033 0.0033 0.033 0.0033 0.033

Table 11.2: Crossover and Mutation Rates

θ
b

= 0.0168/0.016 = 1.05 > 1.We also vary the rates of crossover and mutation rates

in the simulations as presented in Table 11.2.

11.3 Step 3: Unifying and Evaluating the Analogues

The results from the GA are compared with those from three learning mechanisms

(i.e, static expectations, adaptive expectations, and least squares learning) as well

as human-subject experiments (Wellford 1989). Figure 11.3.1 presents simulations

of the stable cobweb model with 8 sets of crossover and mutation parameters corre-

sponding to Table 11.2. We simulate the model using both basic GA and augmented

GA approaches. The simulations show that the price level is more volatile when

the basic GA is applied. Its movement is bounded around the rational expectations

equilibrium (REE), ranging between 0.6 and 1.8 for all simulations. On the other

hand, if the election operator, suggested by Arifovic (1994), is included in the GA

simulations, the price level converges more quickly to the REE.

Arifovic (1994) provides a detailed discussion of the movements of price and

quantity in the cobweb model under the augmented GA approach. In a nutshell, the

election operator serves an important component of behavioral convergence in the

GA environment. The convergence to an equilibrium happens under GA when all

chromosomes (agents' strategies) become identical so that there is no strategy in the

genetic population deviating from the optimal quantity (q∗) which maximizes pro�t

at an equilibrium price (P ∗). After equilibrium is achieved, the variance of prices
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Figure 11.3.1: GA Simulations (Stable Case: θ
b

= 0.95 < 1)
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and quantities in the population approaches zero. While the reproduction operator

attempts to replicate the better performing strategies to reduce the variance in the

population, crossover and mutation dynamics allow creation of new strategies which

increases the degree of variance. Hence, according to basic GA simulations, the price

level cannot be stabilized at a certain level since crossover and mutation happens in

every generation (See Figure 11.3.1).

When we extend the basic GA and use an election operator. The election operator

�pre-screens� the performance of o�-spring strategies (i.e., strategies after crossover

and mutation). O�-spring strategies are either elected or eliminated and, via the

previous period's �tness function, either enter or do not enter a new generation.

This �quality control� helps to keep better strategies in the new population and

therefore reduces the variance quickly as the algorithm converges to an equilibrium

value. The behavior is con�rmed by the augmented GA simulations in Table 11.3.1.

Arifovic (1994) introduces the GA procedure as an alternative learning mecha-

nism, a mechanism that is used to determine convergence to an equilibrium. This

alternative learning mechanism mimics social behavior � observed in reality �

namely imitation, communication, experiment, and examination. While it can be

di�cult to test GA empirically, the GA simulated data is compared with the data

generated in human-subject experiments. She �nds that, in an unstable case of the

cobweb model, the divergent patterns do not happen under both GA learning and

human-subject experiments. Instead, price and quantity �uctuate around the equi-

librium values as shown in basic GA learning and Wellford's (1989) human-subject

experiments.

More importantly, the unstable model converges to the REE if the election op-

erator is imposed in the algorithm (See Figure 11.3.2). Arifovic demonstrates the

features of the GA are consistent with characteristics of human behavior as observed

in experiments. In reality, agents might not rely on sophisticated forms of learning,

such as adaptive learning or econometric learning, for solving their decision problems.

Rather an alternative or more expansive view of human adaptation and change can

consider how agents generate new beliefs and how the best beliefs survive. In this

more general perspective these latter factors play important roles in adapting new

decisions and strategies.
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Figure 11.3.2: GA Simulations (Unstable Case: θ
b

= 1.05 > 1)
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11.4 Leveraging EITM and Extending the Model

Arifovic (1994) provides an EITM connection by comparing the results using com-

putational experiments with those in real human-subject experiments. She links

elements of social interaction � imitation, innovation, communication, and exami-

nation with genetic operators � computational (empirical) analogues (reproductions,

mutation, crossover and election).

While this example makes comparisons to experiments and other learning algo-

rithms, GA simulation can be contrasted with �real world data� as well. An example

is Arifovic and Maschek's (2006) data based simulation on an agent-based currency

crisis model. Using various parameter values in the model, they �nd that the simu-

lated data share some similar properties from human-subject experimental data and

empirical data from emerging markets.

11.5 Appendix

ABM has been an important element of understanding complex economic and social

systems. ABM also introduces an alternative way to unify formal and emprical an-

laysis, but it also has su�cient analytic power that go beyond traditional modeling

practice assumptions. In economics, for example, the assumptions of utility max-

imization, perfect information, and market clearing are �rmly rooted as the main-

stream micro-foundations. Furthermore, traditional practice also makes use of the

representative-agent hypothesis since it allows for greater ease in solution procedures.

Yet, these modeling assumptions and practices come at a price. Consider that

fully-rational agents are not bounded by any information capacity; heterogeneity

becomes irrelevant; and interactions among agents are unnecessary. When they

examine these shortcomings, LeBaron and Tesfatsion (2008) state that:

�[p]otentially important real-world factors such as subsistence needs, in-

complete markets, imperfect competition, inside money, strategic behav-

ioral interactions, and open-ended learning that tremendously complicate

analytical formulations are typically not incorporated� (page 246).7

For these reasons ABM serves as an alternative method investigating the interactions

among agents in di�erent sectors.8

7Page (2004) points out the importance of ABM for macro-level research. He argues that ag-
gregation models without taking an ABM approach into consideration may disregard important
information leading to errors or inaccurate conclusions, especially when a model is complex.

8Along this line of argumnet, and after the �nancial crisis in 2007-2008, Farmer and Foley (2009)
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Figure 11.5.1: The Structure of the Genetic Algorithm Process

Miller (1986) and Arifovic (1991) were early users of the GA approach to economic

questions. Miller (1986), for instance, develops a model of adaptive economic behav-

ior based on the GA operation with applications � utility and pro�t maximization,

technological innovation, and demographic transitions.9 Figure 11.5.1 represents a

standard structure of the GA operation.10 In the economic arena �although this can

be extended to all manner of social science questions � researchers can consider the

GA process akin to a micro-level social learning system and interpret chromosomes

as economic agents, reproduction as imitation, mutation as experiment, crossover as

communication, and evaluation as market performance (Riechmann 2001).

The GA is an alternative approach to study dynamic processes that includes

asserted that ABM can be a �better way� to �assemble the pieces and understand the behaviour of
the whole economic system� (page 685).

9Miller argues that standard optimization approach and adaptive approach are not mutually
exclusive. Some studies adopt GA to determine selection criteria (i.e., determining stable solu-
tions) when a model has multiple equilibria (Arifovic 1996; Miller 1989; Bullard and Du�y 1998;
Riechmann 1999, 2001; Geisendorf 2011).

10This appendix presents the basic GA approach. Election operator, suggested by Arifovic (1991,
1994), is not illustrated. We refer readers to Arifovic (1994) for the implementation of election
operator in the GA.
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social interaction between heterogeneous agents. Arifovic (1991: 2) argues that:

[a] genetic algorithm describes the evolution of a population of rules,

representing di�erent possible beliefs, in response to experience. ... Rules

whose application has been more successful are more likely to become

more frequently represented in the population, through a process similar

to natural selection in population genetics. Random mutations also create

new rules by changing certain features of rules previously represented in

the population, thus allowing new ideas to be tried.

Thus, we can test whether agents obtain an REE under a series of genetic processing

scenarios (See Bullard and Du�y 1998a, 1998b, 1999; Arifovic 1994, 1995, 1996, 1998;

Arifovic, Bullard, and Du�y 1997).

11.5.1 Formal Analogues

Decison Theory

To explain how the basic GA works,11 we consider a simple pro�t maximization

problem where there exists a group of sellers who sell distinctive products in the

market.12 Assume each seller faces the same individual market demand curve:

p = p (q) , (11.5.1)

where p is the price the seller receives, q is the level of production, and p′ (q) =

dp/dq < 0. Every seller also obtains the same production technology so that the cost

function is identical for all sellers:

c = c (q) , (11.5.2)

where c (·) represents the cost function and c′ (q) = dc/dq > 0. Assume further that

each seller attempts to maximize pro�t by choosing an optimal level of output, q∗,

according to the following pro�t function:

max
q
π = p× q − c (q) . (11.5.3)

11This appendix provides a basic idea of the GA procedure. See Goldberg(1989) and Riechmann
(2001) for further analytical details of the genetic algorithm.

12For simplicity, we assume each seller is a monopolist.
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We derive the �rst order condition from equation (11.5.3), and solve the optimal

level of output, q∗ by equating marginal revenue and marginal cost:

dπ

dq

∣∣∣∣
q=q∗

= 0

⇒ p′ (q∗) = c′ (q∗) . (11.5.4)

To simplify the GA simulation, the demand and cost functions are assumed to be

linear:

p = a− bq, (11.5.5)

and:

c = d+ eq, (11.5.6)

where a, b, d, e > 0. Thus, the maximization of the pro�t function can be written as:

max
q
π = (a− bq) q − (d+ eq) . (11.5.7)

The optimal level of output q for each seller is:

q∗ =
a− e

2b
, (11.5.8)

where a > e. Given q∗ presented in equation (11.5.8), we can obtain the optimal level

of price p∗ and pro�t π (q∗) from equations (11.5.5) and (11.5.7), respectively.

In standard practice, agents can determine the optimal level of output immedi-

ately and obtain the maximum level of pro�t. However, we relax this strong form of

�rationality� and instead assume agents go through a process of trial and error, and

learning from experience to obtain the optimal solution in the model.

11.5.2 Computational and Empirical Analogues

The Operation of the Genetic Algorithm

Genes, Chromosomes, and Populations

The GA process is illustrated in Figure 11.5.1: an initial population with M chro-

mosomes (i.e., there are M individuals in the setting (e.g., society, economy) is �rst

generated at time t = 0. Each chromosome Ci consists of L genes formed in binary

structure with either '0' or '1.' For example, a representative chromosome (agent)

i with length L = 10, can be written as: Ci = 0100101110. Each chromosome is
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read as a binary number with a maximum value Bmax = 2L − 1. Given L = 10,

the maximum value of a chromosome is: B(Cmax
i ) = Bmax = B(1111111111) =

210 − 1 = 1023, where B (·) is a binary operator of converting a binary number into

a decimal number.

To understand the binary operator B (·) , we consider a binary number Ci =

0100101110, the decimal number can be represented as:

B (0100101110) = 0× 29 + 1× 28 + 0× 27 + 0× 26 +

1× 25 + 0× 24 + 1× 23 + 1× 22 +

1× 21 + 0× 20 = 302.

Since there arem chromosomes with length of L in the population, the initial popula-

tion P0 can be represented as an m×L matrix where every gene in each chromosome

is coded either 0 or 1 with equal probability. Assuming there are 8 genetic individ-

uals (i.e., M = 8) in a society or economy at t = 0, a possible population P0 can be

written as:

P0 =

0100101110

1110101010

0101110100

0100001010

1110101000

0101101101

1100101010

0100011100

Note, a chromosome with L = 10 can have a possible value between 0 and 1023.

Its maximum value might be either too large or too small for a economic variable

of interest. For the pro�t maximization example, suppose the parameters in the

demand and cost functions are: a = 200, b = 4, and e = 40 in equation (11.5.8), and

the optimal output level q∗ is 20. If we are interested in the output level evolution

in this genetic economy, we might restrict the output level range between 0 and

Umax, where Umax is an upper bound. We can also interpret Umax as the production

capacity for all sellers in the society or economy. Under these conditions, the possible

value of an economic variable of interest can be written as:

V (Ci) =
Umax

Bmax
×B (Ci) , (11.5.9)
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where V (Ci) ∈ [0, Umax] for B (Ci) ∈ [0, Bmax] . Therefore, given a chromosome Ci =

0100101110, the genetic individual i produces an output level qi:

qi = V (Ci) =
100

1023
× 302 = 29.52 ≈ 30,

where Umax is assumed to be 100 in this example.

On the other hand, if the upper bound of the economic variable of interest is

larger than the maximum value of the binary number, one can increase the maximum

value of the binary number by increasing the length of the chromosomes (L) in

the population, and then apply equation (11.5.9) to restrict a possible range of the

economic variable of interest. As the population contains a total of m individuals

with di�erent production strategies, the GA procedure demonstrates the evolution

of production strategies when heterogeneity, social interactions, and learning are

assumed in the behavioral theory.

Fitness Function

To determine if a genetic �individual� is more likely to �survive� or be reproduced

in the next period, we need to evaluate performance based on the �tness function.

In our pro�t maximization example, equation (11.5.7) can be considered the �tness

function F (Ci):

F (Ci) = π (V (Ci))

= π (qi) = (a− bqi) qi − (d+ eqi) . (11.5.10)

For instance, with the values of a = 200, b = 4, d = 50, and e = 40, the �tness value

of Ci = 0100101110 is:

F (Ci) = π (V (Ci)) = (200− 4 (29.52)) 29.52− (50 + 40 (29.52)) = 1187.48.

If the optimal level of output is q∗ = 20, the maximum �tness level is:

Fmax = (200− 4 (20)) 20− (50 + 40 (20)) = 1550. (11.5.11)

Note that �tness function does not apply to minimization problems (i.e., cost min-

imization problems). For these class of problems an appropriate transformation of

the economic values is needed for generating �tness values.
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Reproduction

Reproduction is a genetic operator where an individual chromosome is copied from

the previous population to a new population. Given a probability of being drawn

for each chromosome based on the �tness value, chromosomes are repeatedly drawn

with replacement from the pool of the previous population. They are then put into

the new population until the size of the new population equals that of the previous

population (i.e., Mt = Mt+1).

Now, let the probability of reproduction be determined by the relative �tness

function:

R (Ci,t) =
F (Ci,t)∑M

m=1 F (Cm,t)
, (11.5.12)

where
∑

i∈M R (Ci,t) = 1. For F (Ci,t) ≥ 0 and for all i, R (Ci,t) is bounded between

zero and one for all i. The relative �tness value R (Ci,t) gives us the probability

chromosome i is copied to the new population at time t + 1. The larger the �tness

value F (Ci,t), the higher likelihood the chromosome survives R (Ci,t) in the next

period. One potential limitation in equation (11.5.12) is that R (Ci,t) can be negative

if the �tness value F (Ci,t) is negative (See equation (11.5.10)). If the probability

value is bounded between zero and one, then this is limitation is not a threat.

Goldberg (1989) proposes a scaled relative �tness function:

S (Ci,t) =
F (Ci,t) + A∑M

m=1 [F (Cm,t) + A]

=
F (Ci,t) + A∑M

m=1 F (Cm,t) +MA
, (11.5.13)

where A is a constant such that A > −minCi∈Pt F (Ci,t) . Introducing A into the

relative �tness function prevents negative probability values of being drawn for some

chromosomes in the population (i.e., S (Ci,t) > 0 for all i.).

The reproduction operator is important in the social sciences. Since well-performed

genetic agents are likely to be reproduced or survive in the next period, reproduction

can be considered imitation. Agents are more likely to imitate or learn from their

peers who have done better in a given setting or market.

Crossover

Crossover occurs when two randomly drawn chromosomes exchange parts of their

genes. This is called the inter -chromosome recombination. In the GA environment,
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Figure 11.5.2: An Example of Crossover

Figure 11.5.3: An Example of Mutation

crossover is a process where parents are replaced by their children in the population.

To explain the complete procedure of crossover, assume there are two �parent� chro-

mosomes which are randomly selected (without replacement) from the population.

A crossover point will be randomly chosen to separate each chromosome into two

sub-strings. Finally, two �o�spring� chromosomes will be formed by swapping the

right-sided parents' substrings with probability κ. Figure 11.5.2 shows the procedure

of crossover where the crossover point is the 7th position from the right.

In the social sciences crossover is a process of communication. Agents obtain new

strategies by exchanging information from each other. Note that crossover may not

improve �tness values. The lack of improvement can be interpreted as agents making

mistakes in communication.

Mutation

Mutation is a genetic operator in which one or more gene within an individual chro-

mosome changes value randomly. Every gene within a chromosome has a small

probability, µ, changing in value, independent of other positions. It is an intra-

chromosome recombination. Figure 11.5.3 illustrates an example of the mutation

process. In �gure 11.5.3, mutation occurs on the 5th gene from the right.

Mutation can be interpreted as invention or an experiment in new strategies.

Firms may not improve their performance by merely imitating other �rms. Instead,

they may need to invent new products or experiment with new production processes.

In a political science context the analogy could extend to any topic involving strategic

messages, whether it is campaigns, negotiations between rival nations, and the like.
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Application: Details of the GA Simulation for Pro�t Maxi-

mization

The GA simulation is based on the example of pro�t maximization presented in the

previous section. Again, assume the parameters in the demand function are a = 200

and b = 400, and those in cost functions are: d = 50 and e = 40. The optimal level

of output is q∗ = 20.

To investigate if agents in the GA environment are able to choose the optimal pro-

duction level in the long run, we assume that there are 200 genetic agents (M = 200)

in the economy with the length of 16 genes (L = 16). The maximum production ca-

pacity for each seller is Umax = 50. Assume the �tness value for each agent is

determined by the pro�t level presented in equation (11.5.10).13 We simulate the

GA economy with 500 iterations (generations) using MATLAB.14 The output and

code of the MATLAB program for the simulation are included at the end of the

chapter.

Figure 11.5.4 presents the movement of average output levels over time. We

obtain the �gure by taking an average of the output levels from 200 agents in each

generation, and then plotting the averages over 500 generations. Figure 11.5.4 shows

there is a large production level adjustment, on average, in the �rst 60 generations

ranging between 18 and 27. After the �rst 60 generations, the production level

becomes more stable and is set around the optimal level of q∗ = 20. In this simulation,

the average output level over the whole time period is 19.93 with variance of 0.39.

This all-time average is very close to the optimal level q∗. It implies that, on average,

genetic agents are able to learn and determine the optimal output level over time.

We further investigate the distribution of production levels in each generation.

Figure 11.5.5 demonstrates the standard deviation of output level within each gen-

eration over time. Not surprisingly, there are larger variations of output levels in the

early generations. After the process of imitation, experiment and communication,

agents have a similar production pattern with the standard deviations becoming

smaller in latter generations.

11.6 MATLAB Output

This is a Genetic Algorithm Simulation.

13Given that the likelihood of reproduction comes from the scaled relative �tness function
(11.5.13) and the probabilities of crossover (κ) and mutation (µ) are 0.3 and 0.0033, respectively.

14We implement the stopping condition to terminate the simulation process after 500 iterations.
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Figure 11.5.4: The Output Level Over Time

Figure 11.5.5: The Standard Deviation of the Output Level Over Time
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The simple profit function is: profit = (a-bq)q - (d+eq).

Given the parameters: a=200, b=4, d=50,and e=40,

the optimal level of output is: q*=20

In this simulation, you have:

a) 200 agents in each population;

b) 16 genes for each agent;

c) 50 as the maximum economic value;

d) 0.3 as the probability of crossover;

e) 0.0033 as the probability of mutation;

f) 500 generations in this simulation.

Hit any key to start running the simulation.

The simulation is now running...

Thank you for waiting. The process of simulation is over.

Please hit any key to get the results.

The mean of the output level in all generations is 19.931.

The variance of the output level is 0.38739.

This is the end of the simulation.

11.7 MATLAB Code

%Genetic algorithm for a simple profit maximization

%

%Initial Population Parameters:

%ind = number of agents(chromosomes) in a population

%bit = number of genes in each agent(chromosome)

%Lmax = the upper bound of the real economic values

%epsilon = the value for the scaled relative fitness

%kappa = Probability of Crossover

%mu = Probability of Mutation

%time = number of generations(simulations)

ind = 200;

bit = 16;

Umax = 50;

epsilon = .1;

kappa = 0.3;

mu = 0.0033;
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time = 500;

%

%Profit function parameters

% Demand function: p = a � bq

% Cost function: c = d + eq

% Profit function: profit = (a-bq)q - (d+eq)

% Optimal level of output: q* = (a-e)/2b

a = 200;

b = 4;

d = 50;

e = 40;

qstar = (a-e)/(2*b);

disp(' ')

disp(' ')

%

disp('This is a Genetic Algorithm Simulation.')

disp(' ')

disp('The simple profit function is: profit = (a-bq)q - (d+eq).')

disp(' ')

stra = ['Given the parameters: a=' num2str(a) ', b=' num2str(b) ', d='

num2str(d) ',and e=' num2str(e) ','];

strb = ['the optimal level of output is: q*=' num2str(qstar)];

disp(stra);

disp(strb);

disp(' ');

disp(' ');

%

disp('In this simulation, you have:')

disp(' ')

str1 = ['a) ' num2str(ind) ' agents in each population;'];

str2 = ['b) ' num2str(bit) ' genes for each agent;'];

str3 = ['c) ' num2str(Umax) ' as the maximum economic value;'];

str4 = ['d) ' num2str(kappa) ' as the probability of crossover;'];

str5 = ['e) ' num2str(mu) ' as the probability of mutation;'];

str6 = ['f) ' num2str(time) ' generations in this simulation.'];

disp(str1);
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disp(str2);

disp(str3);

disp(str4);

disp(str5);

disp(str6);

disp(' ')

%

disp('Hit any key to start running the simulation.')

disp(' ')

pause

disp('The simulation is now running...')

disp(' ')

%

%Value Function and Definitions

Bmax = (2 .^ bit) - 1;

m = ind;

n = bit;

%Generate the Initial Population: "gen"

gen = rand(m,n);

for i=1:m

for j=1:n

if gen(i,j)<.5;

gen(i,j)=0;

else

gen(i,j)=1;

end

end

end

%

%Calculate the real value of each chromosome: "BC"

m2 = 2 * ones(n,1);

for i=1:n

m2(i,1)=m2(i,1).^(n-i);

end

%

%Starting the Genetic Simulation Here!
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for t=1:time

BC = ones(m,1);

for i=1:m

BC(i,1)=gen(i,:) * m2;

end

%

%Calculate the real economic value of each chromosome: "VC"

VC = (Umax ./ Bmax) * BC;

%

%Calculate the real value from the objective function: "FC"

%This is the fitness function (The Most Important Function)

FC = (a - b .* VC) .* VC - d - e .* VC;

%Calcuate the relative fitness of each chromosome: "RC"

RC = FC ./ sum(FC);

%Calculate the scaled relative fitness of each chromosome: "SC"

A = abs(min(FC)) + epsilon;

FCA = FC + A;

SC = FCA ./ (sum(FC) + (m .* A));

genresult = [gen,VC,SC];

%

%Reproduction code

norm_fit = SC;

selected = rand(size(SC));

sum_fit = 0;

for i=1:length(SC),

sum_fit = sum_fit + norm_fit(i);

index = find(selected<sum_fit);

selected(index) = i*ones(size(index));

end

gen = gen(selected,:);

%

%This is the code for Crossover (Point & Pairwise)

%size(gen,1) = ind = number of individual

%size(gen,2) = bit = number of genes

sites = ceil(rand(size(gen,1)/2,1)*(size(gen,2)-1));

sites = sites.*(rand(size(sites))<kappa);
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for i = 1:length(sites)

newgen([2*i-1 2*i],:) = [gen([2*i-1 2*i],1:sites(i)) gen([2*i 2*i-1],

sites(i)+1:size(gen,2))];

end

gen=newgen;

%

%This is the code for mutation

mutated = find(rand(size(gen))<mu);

newgen = gen;

newgen(mutated) = 1-gen(mutated);

gen=newgen;

%

%Collecting solutions of interest

%output(t) = the mean output level in each generation

%variance(t) = the variance of output level in each generation

output(t)=mean(VC);

stddev(t)=var(VC)^.5;

optq(t) = qstar;

tt(t) = t;

end

%

%Reporting results

%mean_output = the average of the mean output level in all generations

%var_mean_output = the variance of the mean output level in all generations

%t_stat_mean_output = the t-statistics of mean_output away from the true

parameter

disp(' ')

disp(' ')

disp('Thank you for waiting. The process of simulation is over.')

disp('Please hit any key to get the results. ')

pause

disp(' ')

disp(' ')

mean_output=mean(output);

var_mean_output=var(output);

str_output = ['The mean of the output level in all generations is
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' num2str(mean_output) '.'];

str_varout = ['The variance of the output level is ' num2str(var_mean_output)

'.'];

disp(str_output);

disp(str_varout);

%

figure(1)

subplot(2,1,1)

hold on

gop=plot(tt,output);

goptq = plot(tt,optq,'k:');

hold off

title('Output level over time')

set(gop,'Color','black','LineWidth',1.1)

xlabel('Time')

ylabel('Output level')

subplot(2,1,2)

gv=plot(stddev);

title('Standard deviation of output level over time')

set(gv,'Color','black','LineWidth',1)

xlabel('Time')

ylabel('Standard deviation of output level')

disp(' ')

disp(' ')

disp('This is the end of the simulation.')

disp(' ')



Chapter 12

An Alternative Uni�cation

Framework

An important alternative framework for methodological uni�cation is Guillermina

Jasso's Tripartite Structure of Social Science Analysis (Jasso 2004).1 Like the EITM

framework, she seeks to unify formal and empirical analysis. But, unlike the EITM

framework, Jasso's framework can also be used for measurement purposes. The

motivation for Jasso's (2004) tripartite structure:

acknowledges the critical importance of the research activities that pre-

cede theoretical and empirical analysis � developing the framework out

of which theoretical and empirical analysis emerge...it acknowledges the

part played by nondeductive theories and links them to deductive theo-

ries, and it recognizes the extratheoretical empirical work...[it] represents

more faithfully the varied kind of scienti�c work we do and their varied

interrelationships. It invites to the table, so to speak, activities that in

the old world of deductive theory and testing of predictions were slighted,

even as they made their own fundamental contributions to the growth of

knowledge (pages 401-402).

This chapter has three parts. First, we provide a brief background into Jasso's tri-

partite framework. Second, we apply Jasso's framework to a measurement question:

the creation and use of an index for justice. Speci�cally, our application uses Jasso's

justice evaluation function and aggregates it to justice indexes.

1We use the term �framework� as a substitute for Jasso's term � �structure.� However, note
that a component of Jasso's �structure� contains the term �framework.�

212
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Jasso's justice index sheds further light on thinking about di�erent ways to char-

acterize how people decide. Up to this point, the research we have highlighted, to

the extent it involves decision making and decision theory, focuses on cost-bene�t

calculations or other �economic� motivations. But, people make decisions based on

other factors. Justice is one such factor. In a series of papers Jasso (1999, 2002,

2004, 2008, 2010) applies her measurement of justice to a variety of social science

issues. Her measure has important behavioral properties: 1) scale-invariance and 2)

additivity. These properties are �thought desirable on subtantive grounds in a justice

evaluation function (Jasso 2004: 408).�

Third, and not surprisingly, the use of formal and empirical analyis to constuct

indexes is also done in other disciplines. The �nal component of this chapter is an

example from economics. We show in the appendix how monetary aggregates are

constructed � and like Jasso � they are based on the linkage between theory and

data.

12.1 Jasso's Tripartite Structure: A Summary

The tools required to implement the tripartite structure are broad. Jasso incorpo-

rates a framework centering on various research design activities � ranging from

the resesarch questions to the way we charactize the relations � which add to the

process of linking formal and empirical analysis.

Jasso's (2004) tripartite structure is represented in Figure 12.1.1. To maintain

�delity to the concepts and de�nitions she describes, we use Jasso's voice, summarize

the key elements, and (where possible) follow the order she describes her tripartite

structure:

• Element 1: The Framework

• Element 2: Theoretical Analysis

• Element 3: Empirical Analysis.

Element 1: The Framework

The middle column of Figure 12.1.1 lists the framework elements. In the case of

justice analysis we have the following considerations.
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Social Science Analysis
Theoretical

Analysis Framework Empirical
Analysis

Deductive
Postulates
Predictions
---------------------

Hierarchical
Postulates

Propositions

Questions
Actors

Quantities
Functions

Distributions
Matrices
Contexts

Measure/
estimate

terms/relations
-------------------
Test deduced 
predictions

-------------------
Test 

propositions

Figure 12.1.1: Jasso's Tripartite Structure

Fundamental Questions: For justice analysis fundamental questions can include

(page 405):

1. What do individuals and collectivities think is just, and why?

2. How do ideas of justice shape determination of actual situations?

3. What is the magnitude of the perceived injustice associated with given depar-

tures from perfect justice?

4. What are the behavioral and social consequences of perceived injustice?

Fundamental Actors: Jasso argues there are two fundamental actors in justice

analysis: the observer and the rewardee. �The observer forms ideas of the just

reward for particular rewardees and judges the justice or injustice of the actual

rewards received by rewardees (where the observer may be among the rewardees)

(page 404).�

Fundamental Quantities: For justice analysis, Jasso presents three fundamental

quantities: the actual reward, the just reward, and the justice evaluation.

Fundamental Functions: Fundamental functions �become critical building blocks

both for theoretical work, where they often appear as assumptions, and for empirical

work, where they appear as relations to be estimated (page 408).� Each of the

central questions are addressed by a function (or family of functions) that combines

some of the fundamental quantities. �For justice analysis, the �rst central question
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is addressed by the just reward function, the third central question by the justice

evaluation function, and so on (page 406).�

Jasso characterizes an agent's decision on what is just and not just (actual reward

and just reward) with a particular functional form. The justice evaluation function's

functional form re�ects losses being given greater weight than gains: while the justice

evaluation increases with the actual reward it does so at a decreasing marginal rate.

A functional form characterizing these behavioral traits is the logarithm of the ratio

of the actual reward to the just reward:

J = θln

(
A

C

)
, (12.1.1)

where:

• J is the justice evaluation (the assessment by an observer that a rewardee is

rewarded justly or unjustly).

• A is the rewardee's actual reward.

• C is the observer's idea of the just reward for the rewardee.

• θ is the signature constant.

Jasso calls the sign of θ the framing coe�cient. The reason is this coe�cient �em-

bodies the observer's framing of the reward as a good or as a bad (negative for a bad,

positive for a good), and the absolute value of it called the expressiveness coe�cient

since it transforms the observer's experience of justice into the expression thereof

(page 408).�

A critical matter in linking the theory and the nature of how people decide what is

just resides in the log-ratio speci�cation. Jasso notes that this particular speci�cation

of the justice evaluation function has been shown to be the only speci�cation that

satis�es both scale-invariance and additivity. These two conditions are desirable on

substantive grounds in a justice evaluation function.

Fundamental Distributions: For the case of justice many distributions are avail-

able. Jasso explains:

In the case of cardinal goods, the actual reward distribution and the

just reward distribution can assume a variety of shapes, usually modeled
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by variates speci�ed on the positive support, such as the lognormal and

Pareto. And the justice evaluation distribution, re�ecting the operation

of both actual reward and just reward in the production of the justice

evaluation, can assume a large variety of shapes as well (page 410).

Jasso notes the distribution or distributions used will depend on how the justice

evaluation is modeled. Many distributions �t, including �the negative exponential,

the positive exponential, the Erlang, the normal, the logistic, the quasi-logistic, the

Laplace, and the asymmetrical Laplace (page 410).�

Fundamental Matrices: Jasso shows the fundamental actors can be arrayed in

matrix form and, therefore, applicable to applied statistical analysis. In the justice

analysis example the three fundamental quantities are represented by �three funda-

mental matrices: the just reward matrix, the actual reward matrix (which in the

absence of perception error collapses to a vector), and the justice evaluation matrix

(page 409).�

In applying equation (12.1.1) to these matrices, Jasso provides the following no-

tation (page 409). Let the observers be indexed by i = 1, ..., N and rewardees by

r = 1, ...R. Consequently, cir,air, jir represent the observer-speci�c and rewardee-

speci�c just reward, actual reward, and justice evaluation, respectively. With these

details we have the following matrices or vector.

The just reward matrix:

C =



c11 c12 c13 . . . c1R

c21 c22 c23 . . . c2R

c31 c32 c33 . . . c3R

. . . . . . .

. . . . . . .

. . . . . . .

cN1 cN2 cN3 . . . cNR


The actual reward matrix:2

2Jasso indicates that �if there are no perception errors, the actual reward matrix collapses to a
vector: (page 409)�

a.r=
[
a.1 a.2 a.3 . . . a.R

]
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A =



a11 a12 a13 . . . a1R

a21 a22 a23 . . . a2R

a31 a32 a33 . . . a3R

. . . . . . .

. . . . . . .

. . . . . . .

aN1 aN2 aN3 . . . aNR


The justice evaluation matrix is:

J =



j11 j12 j13 . . . j1R

j21 j22 j23 . . . j2R

j31 j32 j33 . . . j3R

. . . . . . .

. . . . . . .

. . . . . . .

jN1 jN2 jN3 . . . jNR


.

Fundamental Contexts: The use of context is also a consideration. In justice

analysis context-speci�c variation occurs in a variety of areas. Formalization of

context considerations include: �b for the bene�t under consideration, r for the type

or identity of the rewardee, o for the observer, t for the time period, and s for the

society (page 410).�

Element II: Theoretical Analysis

As shown in the left column of Figure 12.1.1, (the theoretical panel), Jasso distin-

guishes between two main kinds of theories � deductive theories and hierarchical

(nondeductive) theories:

both deductive and hierarchical theories have a two-part structure, the

�rst part containing an assumption or a set of assumptions � also called

postulates... the assumption set should be as short as possible, and the

second part [predictions and propositions] should be as large as possible

and, indeed, always growing ... (page 411).

Deductive Theory: Jasso argues deductive theory possesses �the starting assump-

tion, perhaps in combination with other assumptions, is used as the starting point

from which to deduce new implications. These implications (predictions) show the
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link of the process described by the starting assumption. They are observable,

testable implications; as well. They are ceteris paribus implications, given the mul-

tifactor world in which we live (page 411).�

Deductive theories are assessed on both theoretical and empirical criteria.

Theoretical criteria focus on the structure of the theory. A good theory

has a minimum of assumptions and a maximum of predictions...Moreover,

in a good theory, the predictions constitute a mix of intuitive and nonintu-

itive predictions, and at least some of them are novel predictions...Empirical

criteria for evaluating deductive theories focus, of course, on tests of the

predictions. It may happen that early in the life of a theory, the assump-

tion set grows. It may come to be seen that the single starting assumption

is not su�cient by itself to yield many predictions but that the introduc-

tion of one or two additional assumptions produces unexpected synergies

and an explosion of new predictions. Often, work with a particular set

of assumptions leads to codi�cation of special methods for deriving pre-

dictions. These special methods may focus on special representations of

the assumptions or special kinds of tools (page 412).

Hierarchical Theory: Hierarchical theory di�ers from deductive theory. Even

though �both kinds of theories begin with an assumption, in a hierarchical theory

there is no deduction; instead, propositions are constructed by linking a term from

the assumption with an observable term (page 414).� For justice analysis:

a hierarchical theory in which the justice evaluation function is an as-

sumption might be used to construct propositions linking observables to

the justice evaluation or to the proportion overrewarded or to the average

underreward among the underrewarded (page 414).
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Element III: Empirical Analysis

Three forms of empirical analysis are identi�ed in Figure 12.1.1.3 Two involve test-

ing the predictions deduced in deductive theories and the propositions constructed

in hierarchical theories.�A third kind of empirical work, and sometimes the only em-

pirical activity � especially in the early stages of development of a particular topical

sub�eld � consists of basic measurement and estimation operations. The quantities

identi�ed in the framework are measured, the functions and distributions estimated,

and the matrices populated (page 422).�

Testing the Predictions of Deductive Theories v. Testing Propositions

Construed in Hierarchical Theories:

Jasso argues there are similarities and di�erences between tests for deductive

and hierarchical theories. Deductive theories test predictions based on a well de�ned

�path,� but in the case of hierachical theories tests focus on the propositions. �Testing

the propositions constructed in hierarchical theories is less demanding in part because

the proposition is already at least half observable, given that it was crafted by linking

a term from a postulate to an observable term (page 423).�

On the other hand, when designing the speci�cation and estimation procedures,

both types of theories are equally demanding. Because many causal factors are in

play, similar speci�cation challenges exist, and both the nature of the speci�cation

and the quality of the data lead to similar estimation challenges.

A �nal aspect is interpreting the results. �Because in the construction of proposi-

tions in hierarchical theories no pathways have been speci�ed, the knowledge gained

from empirical tests is less informative in some sense than the results of tests of

predictions, though nonetheless important (page 424).�

Extratheoretical Measurement and Estimation: In Figure 12.1.1, this type

of work is represented in the top row of the empirical analysis column. Jasso charac-

terizes extratheoretical research consisting �mainly of measurement and estimation

of quantities and relations in the framework (page 424).� Extratheoretical research

activities are quite numerous and informative in justice analysis. They include (but

3When it comes to determining the usefulness of a model Jasso asserts:

There is widespread agreement that rejecting a prediction is not a su�cient condition
for rejecting a theory. Moreover, rejecting a prediction is not a necessary condition for
rejecting a theory; even if all of a theory's predictions survive test unrejected, one may
still reject the theory�in favor of a better theory, one with ``excess corroborated con-
tent'' (Lakatos 1970). Indeed, the view known as sophisticated falsi�cationism holds
that it is not possible to judge the empirical merits of a theory in isolation; falsi�cation
requires comparison of the relative merits of two theories (Lakatos 1970:116).
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are not limited to):

• Measuring the true and disclosed just rewards.

• Measuring the experienced and expressed justice evaluations.

• Estimating the just reward function and the principles of microjustice.

• Assessing the extent of interindividual disagreement on the principles of justice.

• Ascertaining whether individuals frame particular things as goods or as bads.

• Estimating observer's expressiveness, comparing the just inequality with the

actual inequality.

• Assessing just gender gaps and their underlying mechanisms.

• Measuring trends in overall injustice.

• Estimating the poverty and the inequality components of overall injustice.4

12.2 An Illustration of Extratheoretical Research:

The Justice Index and Gender Gaps

In this illustration we apply aspects of Jasso's tripartite stucture to extratheoretical

research, and creating a justice measurement. Jasso examines justice indexes and

gender gaps in the U.S. The data are from the 1991 International Social Justice

Project (ISJP) (2004: 424-427).5 Respondents state their actual earnings and the

earnings they think just for themselves (Jasso 1999).6

Some fundamental questions pertain to the experience of injustice.

1. How pervasive is the experience of unjust underreward?

2. Does the experience of injustice vary systematically by gender?

4This list can be found in Jasso (2004: 424).
5�The ISJP was the �rst major international e�ort to document the views of ordinary citizens

regarding social, economic, and political justice. The project involved �ve Western democracies
and eight formerly socialist countries (page 424).�

6The complete dataset of International Social Justice Project, 1991 and 1996, can be ob-
tained from Inter-university Consortium for Political and Social Research (ICPSR) at the Uni-
versity of Michigan. The data of the U.S. sample are available from the following website:
http://www.uh.edu/class/hcpp/EITM/EITMBook.html. Interested readers can also download the
STATA do-�le to compute the results in Table 12.1 (Jasso 2004: 426).
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3. Is the experience of injustice driven by poverty or by inequality?

To measure the individual's justice evaluation, the justice evaluation function in-

troduced previously is used (Equation (12.2.1)). It calculates the personal justice

evaluation from the information provided on actual and just earnings. Jasso call this

experienced justice evaluation. This type of evaluation omits the signature constant

(θ):

J = ln

(
A

C

)
, (12.2.1)

This fundamental function includes the following implications:

1. In the state of perfect justice, the rewardee's actual reward (A) equals the

perceived just reward (C) : such that the justice index J = ln (A/C) = ln (1) =

0.

2. The justice index is positive (i.e., J > 0) when the actual reward (A) is greater

than the previous just reward (C).

3. Implication 2 suggests that the rewardee perceives herself that she is over-

bene�t or under-burden in terms of her actual earnings. However, a rewardee

would consider herself as under-bene�t or over-burden when her actual reward

(A) is less than her perceived just reward. It indicates that J < 0.

12.2.1 Justice Indexes

Two justice indexes are suggested by Jasso, but one is a special case of the other. The

�main� justice index � JI1 � is de�ned as the arithmetic mean of the experienced

justice evaluation: JI1 = E (J) = E (ln (A/C)). �It can assume positive, negative,

and zero values. A positive value has the interpretation that the center of gravity of

the distribution of justice evaluations lies in the over-reward region, and a negative

value indicates that the center of gravity lies in the under-reward region (page 245).�

12.2.1.1 Decomposition Methods

Along with these distributional characteristics, Jasso (1999) also presents two de-

compostion methods:

• Mean-inequality decomposition

• Reality-ideology decomposition.
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Mean-Inequality Decomposition

For the method of mean-inequality decomposition, the argument is that the justice

index (JI1) can be calculated as the sum of justice evaluation about the mean

(JI1Mean) and the justice evaluation about the inequality (JI1Ineq).

Note that the formula of justice index can be rewritten as the log of the ratio of

geometric mean of actual reward to geometric mean of just reward:

JI1 = E (ln (A/C)) = ln (G (A) /G (C)) , (12.2.2)

where E (·) represents the operator of computing arithmetic means (or expected

values), that is, E (X) =
(∑N

n=1 xn

)
/N . G (·) is the geometric mean operator

where G (X) =
(
ΠN
n=1xn

)1/N
.

To calculate the component of inequality in the justice index, Jasso considers

Atkinson's (1975) measure I, which is de�ned as:

I (X) = 1− [G (X) /E (X)] . (12.2.3)

According to equation (12.2.3), if the geometric mean equals the arithmetic mean in

a dataset, that is, G (X) = E (X), then Atkinson's measure I (X) equals zero. This

result indicates there is no inequality observed in the data.

However, the value of Atkinson's measure increases as the distribution of the

observations becomes more unequal. We obtain the geometric mean from equation

(12.2.3):

G (X) = E (X) [1− I (X)] , (12.2.4)

where the geometric mean can be written as a function of arithmetic mean and

Atkinson's measure.

Finally, expressing the geometric means for actual reward G (A) and just reward

G (C) � according to equation (12.2.4) � we can rewrite the justice index JI1 as

follows:

JI1 = ln

(
E (A) [1− I (A)]

E (C) [1− I (C)]

)
. (12.2.5)

As a result, equation (12.2.5) can be expressed as the sum of two components:

JI1 = ln

(
E (A)

E (C)

)
+ ln

(
1− I (A)

1− I (C)

)
= JI1Mean + JI1Ineq, (12.2.6)
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where JI1Mean ≡ ln (E (A) /E (C)) , and JI1Ineq ≡ ln ((1− I (A)) / (1− I (C))) .

The justice index, about the mean (JI1Mean), represents an (arithmetic) average

value of the actual rewards relative to that of the perceived just rewards in the

sample. On the other hand, the justice index about the inequality (JI1Ineq) indicates

the di�erence between the inequality of the actual rewards and the inequality of the

just rewards in the sample.7

Reality-Ideology Decomposition

While inequality measures portray factual inequality, they do not include knowledge

of individual-speci�c ideas of justice. Jasso, therefore, suggests the justice index JI1

can be interpreted in an alternate way. She distinguishes between injustice due to

reality (JI1Reality)and injustice due to ideology (JI1Ideology). Injustice due to reality

is based on how a person observes their actual income in relation to the mean and the

inequality of the income distribution. Injustice due to ideology is based on what a

person perceives the just income in terms of the mean and the inequality distribution.

Hence, the justice index can be rewritten as follows:

JI1 = ln (E (A) (1− I (A)))− ln (E (A) (1− I (A)))

= JI1Reality − JI1Ideology, (12.2.7)

where JI1Reality ≡ ln (E (A) (1− I (A))) and JI1Ideology ≡ ln (E (A) (1− I (A))).

Equation (12.2.7) shows that JI1 is equal to the reality component minus the ideol-

ogy component (as also shown in the formula in Table 12.1).

An Alternative Index

The second index � JI1* � is a special case of JI1 in which the just rewards (i.e.,

C) equal the mean rewards (i.e., E (A)). Intuitively, this measure arises when justice

is equality. Hence, we can express JI1∗ as follows:

JI1∗ = JI1|C=E(A) = E

[
ln

(
A

E (A)

)]
.

This measure Jasso (2004: 425) argues is consistent with other sociological interpre-

tations in the literature (Blau 1960, 1964; Blalock 1967). It can be applied to small

7Jasso (1999) argues that the justice index about the mean (JI1Mean) is the perceived injustice
driven by scarcity or poverty, while the second component of justice is due to the inequality in the
distribution of income.
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homogeneous groups or utopian communities.

12.2.2 Results

The results, presented as �ve components, are in Table 12.1. The component are:

Base Data. this includes average actual earnings, average just earnings, and

sample size, both for the U.S. sample as a whole and for gender-speci�c subsamples.

Justice Index JI1 Its Decompositions. The results indicate there is 4 percent more

injustice for women (-.236) than men (�.207). Recall from equation (12.2.6) JI1 is the

sum of the mean component and the inequality component: this ��rst decomposition

of JI1 makes it possible to distinguish between two components of overall injustice,

injustice due to the mean, and injustice due to inequality (page 425).�

Jasso notes these results have rival interpretations. �Depending on the context,

the mean component may be interpreted as a scarcity component or a poverty com-

ponent. The mean component is larger than the inequality component for both men

and women; however, the relative magnitudes di�er considerably (page 425).� 75

percent
(−0.155
−0.207

)
of overall injustice for men is due to scarcity, but for women it is a

higher proportion, 94 percent
(−0.223
−0.236

)
. Note, too, nearly all of injustice for women

is due to scarcity.

The reality-ideology decomposition, as de�ned in equation (12.2.7) show there

are di�erences between reality and ideology. �Among both women and men, the

ideology component exceeds the reality component, producing the negative JI1. As

already known from the magnitudes of JI1, the discrepancy is larger among women

than among men (page 425).�

Justice Index JI1 and Its Gender Decomposition. Jasso notes that �if equality

was used as the standard for just earnings, experienced injustice would be greater,

substantially so among men (�.207 versus �.340 among men and �.236 versus �.271

among women) (page 426).� Within-group (gender) and between-group (gender)

decompositions add further information. Recall that JI1* is equal to the sum of

the two components. The within-group (gender) component is �the weighted sum

of the group-speci�c values of JI1*, where the weights represent the fraction of the

population in each group (page 426).� The calculation for the between-group (gender)

component is �the weighted sum of the log of the ratio of the group mean to the

overall mean.� The results in Table 12.1 show the within-gender component is much

larger than the between-gender component, constituting 87 percent of the overall

JI1*: there is more variability within genders than between genders.
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Table 12.1: Justice Indexes and Gender Gaps: U.S. Sample, ISJP 1991 (Jasso 2004:
426)
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Gender Gaps in Actual and Just Earnings. On page 426 Jasso �nds the �gender

gaps, de�ned as the ratio of the women's average to the men's average, includes both

actual earnings and just earnings. As shown, and as evident from the base data the

gender gap is greater for actual earnings than for just earnings:� (.544 v. .582).

Special Relation Between Mean Component of JI1and Ratio of Gender Gaps.

An important �nding was �the usual way of measuring gender gaps is completely

inattentive to within-gender inequality� (page 427). The reason for this conclusion

is found in Table 12.1. This gender gap ratio �provides a numerical approximation

to an exact relation between aspects of the justice index and aspects of the gender

gap. The signed di�erence between the women's mean component of JI1 and the

men's mean component of JI1 is equal to the log of the ratio of the actual gender gap

to the just gender gap� (page 427). The just gender gap exceeds the actual gender

gap and it is the just gender gap that captures the higher variation in within-gender

inequality.

To sum up, some highlights from the justice index analysis include the following:

1. In a 1991 United States sample women experienced more injustice, on average,

than men.

2. For both genders, scarity (poverty) is a more important factor in perceiving

injustice than inequality. Women, however, reveal scarcity is an even greater

factor than men.

3. Average �just� earnings exceed average actual earnings. Women have a greater

gap than men.

12.2.3 Leveraging the Justice Index

As with EITM, there are several ways to build on the justice index. To begin, this

index should be used in a comparative setting over time. The sample used here is only

for the United States in 1991, but expanding the sample to many countries and many

years is a logical next step. A second extension would to sample the same individuals

over time to see if their views on justice evolve and what the context was for the

changes in their justice evaluation. A third consideration is to continue with other

subgroup breakdowns. Gender is important but factors such as age and education,

amongst other factors, can also provide new insights on how people judge something

to be just. A fourth issue would be to determine the relation between the justice

index and indicators of societal and political stability and the overall legitimacy of
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a political, social, and economic system. A �nal consideration is a determination

of whether a justice index based on �equality� can be extended to include a justice

index based on an individual's sense of freedom and liberty.

12.3 Appendix

The use of theory to create valid indices can be found in other social science disciplines

as well. Here we demonstrate how theory plays a role in the construction of measures

of the money suppy � monetary aggregates. We relate the process and the tools

involved and the challenges that are faced.

The tools introduced in this process are: 1) Aggregation Theory and 2) Index

Number Theory.

12.3.1 Linking Instruments to Outcomes: The Case of Mon-

etary Aggregates

Monetary aggregate measures are as straightforward as adding the components to-

gether, so-called �simple-sum� aggregates. But components can also be aggregated

applying microeconomic reasoning to aggregation theory and index number theory.

These �Divisia aggregates� possess important policy implications. They provide a

more accurate reading on changes and the expected consequences of monetary pol-

icy than the rival simple-sum aggregates.

An example where inaccurate measurement a�ected the conduct of monetary

policy occurred during the recession in the early 1980s. Policy, it could be argued,

prolonged the recession. In reviewing the behavior of these rival monetary aggregate

measures, William Barnett (1984) concluded:

Monetary policy during the sample period induced slower and more volatile

monetary growth than was indicated by the o�cial simple sum aggre-

gates...Because monetary policy, as indicated by Divisia monetary aggre-

gates, was tighter than indicated by the o�cial aggregates, our results

provide an illustration of how inattention to well-established statistical

theory can lead to policymaking that may be less e�ective than it might

be (page 171).

A decoupling between instruments and the money stock has, at times, had tragic
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consequences, including the Great Depression.8 One reason for the discrepancy is

the public reduces its demand deposits but holds more currency. This contracts the

money stock and the supply of loanable funds. At the same time, however, the shift

from demand deposits to currency increases the level of the monetary base (provided

reserves do not decline by a commensurate proportion, the currency increases).

12.3.1.1 Measurement and Spurious Outcomes: Aggregation Error

While it is well known to students of monetary policy that the o�cial monetary

aggregates are based on simple sums of the component quantities. However, a valid

simple sum aggregate requires the components be perfect substitutes. We cannot

add apples to oranges to get an aggregate of oranges; it simply makes no sense to

say a dollar in currency provides the same monetary services as a dollar in Series E

bonds. They are not perfect substitutes.9 The impact of aggregation error grows as

the number of components increases.10

In sum, the e�ect aggregation error fostered by imperfect substitution cannot

be overemphasized. Simply combining components in a monetary aggregate can

contain so much aggregation error that it gives the appearance of endogeneity (re-

sponding to business cycle conditions or interest rates). A more correct aggregation

index accounting for internal substitution e�ects reduces the potential for a spurious

diagnosis on endogeneity.11

8It is possible for monetary instruments, such as the monetary base (high powered money)
to exhibit behavior that is inversely related (or not related at all) to the money stock (MlB for
example). Indeed, this occurred during the Great Depression (1929-1933). Friedman and Schwartz
(1963: 332-333) document that deposit reserve and deposit-currency ratios fell during this period
while the monetary base exhibited an increase. Up until that period, however, Friedman and
Schwartz assert the relation between the money stock and the monetary base was strong.

9Taken to its logical extreme, a government that used simple sum monetary aggregates could
monetize its entire debt holdings and have no change in the money stock as government securities
and currency would be considered substitutes for each other.

10The problem of imperfect substitution is less severe for the narrower monetary aggregate be-
cause the respective components tend to be more closely related. In comparative analysis, one
would expect that since both simple sum and Divisia aggregates are constructed di�erently they
should exhibit di�erent behavior. This suspicion is con�rmed (See Barnett 1982; Barnett, O�en-
bacher, and Spindt 1984). There are exceptions, however. Barnett, O�enbacher, and Spindt (1984)
have found that at lower levels of aggregation, simple sum aggregates can, under certain tests,
outperform Divisia aggregates.

11By way of example consider an increase in interest rates (which do correspond to the business
cycle). This would have an impact on user costs between various monetary assets (components of
a monetary aggregate) that are either rate regulated or not.
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12.3.2 Relating Theory to Measurement

In an e�ort to address the challenges above, William Barnett derived the theoretical

link between monetary theory and economic aggregation theory (Barnett 1980). Bar-

nett's aggregates, known as Divisia aggregates, have microeconomic foundations.12

In e�ect, he replaced the ad-hoc component summation and weighting schemes with

a monetary aggregation method that relates component quantities to their user costs

(e.g., the rental price of holding an asset at some point in time).

The result is Divisia monetary aggregates change under certain circumstances,

but the dynamics are linked to agent (public) behavior. For example, the aggregate

responds when the change in the interest rate has a microeconomic e�ect (in this case

an income e�ect); otherwise, all changes in interest rates will lead to pure substitution

e�ects along the indi�erence curve. The implication then is the Divisia aggregate

is not dependent on interest rate or business cycle �uctuations.13 The e�ects are

accounted for by internal substitution.14

12.3.2.1 De�ning User Costs

Recall the fundamental measurement problem resides in the simple-sum data being

constructed in such a way making it vulnerable to external shocks, which undoubtedly

leads to spurious inferences. To account for these distinct component values, Barnett

12Divisia aggregates �dominate� simple sum aggregates in comparative statistical tests (Barnett
1982). The results, to date, show that Divisia aggregates not only give di�erent qualitative results,
but they also have superior properties for statistical inference.

13In more technical language, the weights of components should show increasing dispersion, which
would also have a commensurate a�ect on the Divisia quantity variance. However, the dependence of
the monetary aggregate on interest rate �uctuations (or business cycle �uctuations) will be greater
or less depending on the di�erence between the dispersion in weights (shares) of components and
the user cost price variance. If increases in dispersion of the weights (shares) of components are
matched by an increase (of roughly equal proportion) in the user cost price variance, then the Divisia
aggregate quantity disturbance should be relatively undisturbed. These products are expenditures
on the respective components. The expenditures on each component are then divided by the total
expenditures on all components of the aggregate to determine the share of a given component. These
shares are then averaged between the current and preceeding month. Each individual share is used
in �weighting� the growth rate for the appropriate individual component, which are then summed up
to determine the growth rate of the aggregate. On the other hand, simple sum aggregates, because
the components are assumed to be perfect substitutes, fail to internally substitute relative user cost
changes (decisions made by agents). This weakness creates spurious �ndings.

14In an empirical test on Divisia second moments, Barnett, O�enbacher, and Spindt (1984) found
exactly this result. Divisia aggregates are not endogenous to business cycle �uctuations or interest
rate �uctuations.
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(1980) derived a user cost formula for monetary assets (components):

Πi,t =
P ∗t (Rt − ri,t)(1− τt)

1 +Rt(1− τt)
,

where:

Πi,t= the user cost for monetary asset i during period t.

Rt= expected yield on bonds during period t.

ri,t = expected nominal holding period yield on monetary asset i during period

t.

P ∗t = cost of living index for period t.

τt = marginal tax rate on earnings for period t.

This user cost formula represents the rental price for holding a monetary asset for

period t. User costs are crucial because as prices they are readily applicable for

statistical index number theory. Statistical index number theory is important since

it can be used to account for component dispersion.

Statistical index numbers are functions of component prices and quantities for a

respective aggregate. Let (qt) represent a vector of quantities consumed of the com-

ponent goods and (pt) represent a vector of component prices. To derive correct price

and quantity aggregates we simply make the aggregate a function, (f(pt, qt, pt−1, qt−1)),

based on values at period t and t − 1. This gives quotients for rates of change in

prices and quantities during period t.

Since we now have respective component prices and quantities, it is appropriate

to determine the approximate growth rate for the monetary aggregate. Let mi,t be

the of monetary asset i during period t, and si,t be the user cost �weighted average�

(rental price) of the component i during period t.15 Finally, let QD
t be the monetary

aggregate itself.

With these identities we now derive the Divisia index p for monetary aggregate

QD
t :

log QD
t − log QD

t−1 =
N∑
i=1

s∗i,t(log mi,t − log mi,t−1)

where:

s∗i,t =
1

2
(si,t + si,t−1).

15

si,t =
Πi,tmi,t∑N
k=1 Πk,tmk,t

.
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This Divisia aggregate is now the user cost weighted average of component quan-

tities. Its form approximates Diewert's (1976) superlative index number class, which

are extremely accurate, up to a third-order error term. Divisia aggregates, by virtue

of their construction, yield �ndings qualitatively di�erent, and statistically superior

to, simple sum aggregates.

12.3.3 Aggregation Theory

Aggregation theory is a branch of economic theory that creates macroeconomic data

from microeconomic data. Aggregation theory's virtue is that it ensures that aggre-

gated (macroeconomic) data will behave exactly as if it were elementary, disaggre-

gated data. From aggregation theory we can derive a well speci�ed utility function.

And from this utility function we can specify marginal utilities from each component

which is vital in the construction of an economic aggregate. We can also aggregate

up, given certain assumptions about utility functions. In short, aggregation theory

derives aggregates from an optimization procedure that maximizes a utility function

subject to a budget constraint.

To get a monetary aggregate to behave as an elementary good we derive a utility

function. For ease of discussion we must introduce the following notation and con-

ventions. Let the consumption space be represented by the nonnegative Euclidean-

orthant:

Λn = {(x1, ..., xn) = X Rn; X > 0n},

where Rn is Euclidean space and 0n is an n-dimensional null vector. The constraint

X > 0n implies at least one of the components in X : xi > 0. Let S = l, 2, ..., n be a

set of integers and S1, ..., Sq is a partition of the set S into q subsets. Therefore:

S1 ∪ S2 ∪ ...Sq = S,

Si ∩ Sj = ∅ for i 6= j i, j = 1, ..., q and

Si 6= ∅ for i = 1, ..., q.

Now partition the consumption space (Λn) as a Cartesian product with a subspace

corresponding to a given partition:

Λn = Λn × Λn2 × ...× Λnq

Thus, a component vector, X ∈ Λn, and a strictly positive price vector (P ) can be
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broken down into:

X =
(
xn1 , xn2 , ..., xnq

)
, and

P =
(
pn1 , pn2 , ..., pnq

)
.

The preference relations of the price and component vectors are represented by

utility functions (U : Λn → R). Utility functions are quadratic and as such we further

assume that U is continuosly twice di�erentiable and quasi-concave with a strictly

positive marginal utility. For a utility function to exist, a change in the consumption

of one component must not induce a change in consumption in another component.

That is, the marginal rates of substitution (cross elasticities) of each component are

independent of each other.

With these conventions in place we can now proceed to a two-stage budgetary

decision. The purpose here is to establish a real-world disaggregated utility func-

tion and aggregate up to a shadow world, which behaves as if it were a consumer

maximizing utlity subject to a budget constraint.

A two stage budgeting decision takes the following form:

MaximizeU (x)

subject to : px = m

where x ∈ Λ, p is is a strictly positive price vector, and m is total income. With this

simple optimization function we represent the consumer budget in two stages.

• Stage One:

MaximizeU = F
(
U1, U2, ..., U q

)
subject to :

q∑
i

pixi = m

• Stage Two:

MaximizeU i (xni)

subject to : pniXni = piui (Xni) for i = 1, 2, ..., q.

In the �rst stage the consumer allocates the total income (m) to the component

groups (blocks) {Ui(Xni)}; this establishes a budget constraint. The second stage
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involves the speci�c expenditure on each component that make up a given block.

If the results in the utility function are the same as the in the two-stage budgeting

decision, then the solution is consistent or exact and we have a well-de�ned utility

function.

Consistency is a necessary and su�cient condition for establishing an equivalent

relation from the real (disaggregated) world to the shadow (aggregated) world. Green

(1964) set out the conditions by which consistency (or exactness) could hold:

Green's Theorem 4: A two stage budgeting decision is exact and ∃Ui (Xni) and

pi i� U(x) is weakly separable in the partition S1, ..., Sq and the functions U i

are linearly homogeneous w.r.t. Xn.

Formally, this �blockwise weak separability� condition is de�ned as:

De�nition 1: U(x) is weakly separable w.r.t. to the partition S1, ..., Sq if
∂[Ui(x)/Uj(x)]

∂Xk
=

0 ∀i, j ∈ Sq and K /∈ Sq.

The existence of weak separability is derived from Gorman (1953):

Gorman's Theorem: U(x) is weakly, separable w.r.t. the partition S1, ..., Sq i�

∃F:→Rnand Ui :Λni → R such that U(x) = F
(
U1 (xni) , U

2 (xn2) , ..., U
q
(
xnq
))
.

From Green's Theorem 4 the weak separability condition allows for the establish-

ment of a well de�ned utility function. In addition to the weak separability condi-

tion, Green's theorem imposes one more condition � linear homogeneity.16 Linear

homogeneity (homotheticity) is a necessary and su�cient condition for the existence

of aggregate prices. It ensures that exact expenditure values feed into the second

stage budgeting decision from the �rst stage.

However, linear homogeneity is a severe assumption, which cannot be justi�ed

empirically. Linear homogeneity violates Engel's law because it produces income

elasticities for every good that must be unity. The implication then is expenditure

shares of all goods are independent of income and only dependent on relative prices:

poor people spend the same proportion of income on food as rich people. This is

clearly implausible.

There are many ways to get around this problem. The key is to devise a method

that will allow for aggregation across consumers, but will not also imply unitary price

16Linear homogeneity means when all components are increased k-fold, the aggregate itself also
increases k-fold.
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Figure 12.3.1: A�ne Transformation

and income elasticities. A�ne transformations present such an accomodation.17 An

A�ne transformation has the simple form:

T (p) = A(p) +B,

where A is a linear function and B is a �xed vector. The di�erence between a lin-

early homogeneous transformation and the A�ne transformation is the �xed vector

B. In Figure 12.3.1 the di�erence is demonstrated by the fact the homothetic trans-

formation passes through the origin. The A�ne transformation, in contrast, begins

at some �xed point in the northeast quadrant (bi). This di�erence has important

qualitative implications. A vector passing through the origin means consumers have

zero consumption.

On the other hand, a vector beginning at some �xed point indicates consumers

have a survival set, which they cannot consume less than. Yet, the A�ne trans-

formation still allows for linear homogeneity beyond bi so that we can aggregate

across consumers. Of no less importance is the �xed vector bi. It represents a region

where price and income elasticities are indeterminate; therefore, price and income

elasticities are not unitary.

The A�ne transformation introduces a new stage in the budgeting process. The

constraint, px = m, must now be transformed to m̂, where m̂= m−p′b. The variable
17If the quantity aggregator function is not linearly homogeneous, (i.e., nonlinear Engel curves)

then we cannot use two-stage budgeting for the purposes of �nding quantity aggregator functions.
Distance functions are used in this case (See Barnett 1987: 145-149).
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m represents supernumerary income, which the consumer uses as a budget constraint.

With the two (three) stage budget procedure and Green's Theorem 4, corrected

for homotheticity, an aggregator function (or economic aggregate) is said to be �ex-

act.� Consumers treat the aggregate as if it were made up of elementary goods. At

this stage, however, we only know how to block components comprising an aggre-

gate function. To estimate an aggregate (or aggregator) function we must use index

number theory.

12.3.4 Index Number Theory

Recall Barnett's Divisia aggregates are considered superlative index numbers. The

speci�c properties they hold for accuracy require a brief discussion of index number

theory. Index number theory is used to approximate aggregator functions. Index

numbers come in two di�erent forms: functional and statistical. Functional index

numbers estimate aggregator functions using empirical estimates for unknown pa-

rameters. On the other hand, statistical index numbers are parameter free; they

depend on component prices and quantities.18

For many years there was controversy as to which index numbers provided a

better approximation to an economic aggregate (aggregator function). The two index

numbers are necessarily competing with di�erent strengths and weaknesses. Because

functional forms are dependent on parameter speci�cation, they are necessarily ad-

hoc and data dependent approximations.

Conversely, statistical index numbers are dependent on prices and quantities to

reveal a current point on an aggregator function. Yet statistical index numbers,

because they are contingent on prices and quantities, they cannot provide a valid

second-order approximation to track an aggregate function. They are useful in the

local sense only.

However, in 1976 Diewert proved that statistical index numbers were linked to

functional index numbers. To prove this Diewert utilized a modi�ed Taylor expansion

of the following form:

∇f
(
m1
)
−∇f

(
m0
)

=
1

2

[
∇f

(
m1
)

+∇f
(
m0
)]T (

M1 −M0
)

where ∇f(mn) is a gradient vector of function f estimated at mn.

18Functional index numbers = F (x, θ) and statistical index numbers = F (x, p), where: x =
quantities of commodities, θ = unknown parameter(s), and p = prices. By their construction,
functional index numbers require data for one period only; whereas, statistical index numbers
require data for more than one period.
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Figure 12.3.2: Gradient

Diewert's contribution was to seek many local approximations in small neigh-

borhoods. From a graphical standpoint (Figure 12.3.2), we see how Diewert's index

numbers could then track an aggregator function. Intervals were set to cover some

average distance between two points, 1
2
(mt + mt−1), where this approximation was

across a su�ciently small neighborhood, (mt−mt−1), yields a third-order remainder.

In short, it is extremely accurate.19

In sum, index number theory and, in particular, superlative index numbers, are

means of estimating (given prices and quantities) speci�c points of an aggregator

function (economic aggregate). We know these estimates are exact in the Diew-

ert sense. A �exible aggregator function can obtain �rst and second order deriva-

tives. Marginal utilities can be considered as quasi-weights, which implies that these

weights are theoretically and empirically driven and not ad-hoc. They must be

blockwise weakly separable and A�ne linearly homogeneous.

19Diewert's method has a residual, (mt − mt−1), smaller than rounding error, which speaks
favorably about its accuracy. Quantity indices of the Diewert variety that are exact over a second-
order approximation to a homothetic function are called superlative. Superlative index numbers,
therefore, can always attain the current value of a �exible aggregator function.



Chapter 13

Conclusion

We believe signi�cant scienti�c progress can be made by unifying formal and em-

pirical modeling. This advancement will require ending existing barriers between

formal modelers and empirical modelers. As the 2002 NSF EITM Report concluded,

practices must change:

formal modelers must subject their theories to closely related tests while,

at the same time, empirical modelers must formalize their models prior

to conducting any of the available statistical tests. The point is not

to sacri�ce logically coherent and mathematical models. Breakthroughs

in theory can be enhanced with the assistance of empirical models in

experimental and non-experimental settings (page 13).

This methodological uni�cation will also lead to the use of an ever increasing set

of behavioral concepts. Application of the EITM framework means new and better

ways will be discovered to model human behavior. And the repeated application of

competing analogues raises the possibility of conceptual proliferation in thinking how

humans act, but now with a sense there is a rigor in putting these new behavioral

developments to the test. The �new� developments in bounded rationality, learning,

and evolutionary modeling are indeed important in EITM, but they are by no means

the only ones.

13.1 Challenges

Recall the motivation for the 2001 EITM Workshop was the intellectual divide be-

tween formal modeling and empirical (e.g., applied statistical) modeling and the

deleterious rami�cations this divide presents to the social and behavioral sciences.

237
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A consequence of this divide is research (and instruction) competent in one techni-

cal area, but lacking in another. This impaired competency contributes to a failure

to identify the proximate causes explicated in a theory and, in turn, increases the

di�culty of achieving a signi�cant increase in scienti�c knowledge.

As we noted � at its most elementary level � EITM is a framework for unifying

formal and empirical analysis. Even though methodological uni�cation of this kind

is not new in social-behavioral science, barriers exist concerning the purpose and

application of EITM (e.g., �that is what we are doing anyway�). Short term barriers

for adopting EITM include basic misunderstanding of what EITM means. Longer

term barriers include rigid training traditions within and across social and behavioral

science disciplines.

The sources of resistance are not surprising. Resistance to unifying formal and

empirical modeling is due to several factors.1 Among those factors are:

1. The Intellectual Investment: Scholars have to invest in di�erent skill sets.

The intellectual investment needed for formal modeling is di�erent than the

knowledge needed for empirical modeling. But, given the greater mathematical

demands in formal modeling the tendency is for students and scholars not to

have su�cient training in formal modeling. This de�cit is compounded since

there are few incentives for motivating tenured faculty to try new methods,

including using formal modeling as part of their tool kit.

2. Training Di�erences: Empirical modelers devote their energies to data col-

lection, measurement, and statistical matters, and formal modelers focus on

mathematical rigor. This divide is reinforced in departments having a strong

tradition in either formal or empirical analysis.

3. Research Practice: For empirical modelers, model failures lead to emphasis

on additional statistical training or more sophisticated uses of statistics � usu-

ally to �patch over� � a model failure. Formal modelers, on the other hand, deal

with model controversies by considering alternative mathematical formulations

but this is usually done piecemeal. However, the one similarity between these

two approaches is that both formal and empirical modelers tend to remain tied

to their particular technique despite the warning signals evidenced in model

breakdown. These practices are reinforced by reviewers or journal editors due

to their specializaton of either formal or empirical analysis.

1These challenges take several forms which are sourced and many of these issues are discussed
in Poteete, Janssen, and Ostrom (2010: 3-27).



CHAPTER 13. CONCLUSION 239

These implementation challenges are deeply rooted in the academic community �

fostered by career incentives � that will take years to overcome (Poteete, Ostrom,

and Janssen 2010: 18-24). Consequently, �Old habits� learned in graduate school

inhibit the desire to make the changes in skill development. But, the situation is

worse since many things learned in graduate school tend to become out-of-date by

mid-career.

If methodological instruction is subjected to these status quo forces, successive

generations will only repeat the shortcomings. We now see, and have repeatedly

seen, applied statistical practices that misuse the t-statistic and, as we have discussed

earlier, are unsuitable for addressing complex issues. Valid policy prescriptions based

on nonfalsi�able methodogy simply will not take place. Prediction without basic

understanding of how a system under study works is of little scienti�c or social

value.

The importance of using EITM to spur training reorientation and integration

within and between disciplines cannot be overstated. Disciplines that provide incen-

tives for this type of risk taking and re-tooling will reduce the threat of an:

assembly-line model of research production that imperils innovative theo-

ries and methodologies and, in turn, scienti�c breakthroughs. One could

make the argument that EITM or initiatives like it are unnecessary be-

cause the unfettered marketplace of ideas expedites best scienti�c prac-

tices and progress. But, it is precisely because there are signi�cant rigidi-

ties (training and otherwise) in the current academic setting (imperfect

competition) which makes EITM-type initiatives not only necessary�but

imperative (EITM Report 2002: 8).

13.2 Instruction: A Reorientation

Establishing formal and empirical modeling competency in training in the social

sciences is a must. Without that foundation any substantial progress in the use of

EITM in the social sciences research is limited. Ideally, reorientation in training

involves two parts:

1. Adding courses to ensure su�cient coverage of both formal and empirical tools

� and appropriate competency testing.

2. Coherent sequencing of the courses so that skills increase over time.
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There are a several possible choices to ful�ll these requirements. A �rst step is

requiring graduate students take one full year (usually) of mathematics for social

scientists. However, what is not typically done is to continue reinforement of this

training. To that end, mathematical (quantitative) competency in these graduate

courses can be demonstrated not only in these foundational courses, but also in

qualifying examinations in the summer after the �rst year of coursework. Students

must clear this hurdle before being allowed to proceed with their Ph.D. It is safe to

say that this latter component would be novel in most social science disciplines.

This mathematical (and quantitative) approach would also be reinforced in re-

vised substantive courses, where examples of methodological uni�cation are used.

Not only substantive survey courses but methodological capstone courses integrat-

ing formal and empirical modeling can serve this purpose. These capstone courses

could include a data gathering component in EITM. Since new technologies have an

impact on theoretical implications, the curricula must re�ect the fact that theory

guides data collection. Further momentum would be re�ected in these new syllabi,

re�ecting the use of EITM.

13.3 Supporting Science, Policy, and Society

In assessing metrics to evaluate whether EITM was making a meaningful contribu-

tion to improving social science practices, the 2002 NSF EITM Report stated the

following:

How will progress be measured? There are several performance indica-

tors, including the number of articles that use formal and empirical anal-

ysis in the major professional journals. Another measurable indicator is

the number of NSF grant proposal submissions by faculty and graduate

students (doctoral dissertations) that use both approaches (page 13).

This increasing presence can be evident in the increasing number of journal arti-

cles, dissertation proposals, books, and research grants. While these metrics repre-

sent �inputs,� they still have rami�cations since they represent how merging formal

and empirical analysis contributes to transforming of how researchers thought about

problems and undertake intellectual risks in synthesizing the model and subsequently

testing it.

Ultimately, the most important metric is improving in our stock of knowledge.

Measuring improvement in our quality of knowledge is not straightforward. EITM,
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methodological uni�cation, is a bridge for establishing transparency and undertaking

a dialogue, but a scholars ability to see and describe the patterns and puzzles in new

and more accurate ways is still the driving force. To put it another way, this dialogue

provides a coherent way to take every idea further, where something new is shown

to be better than what has been established.

Earlier we asserted that EITM can improve current methdological practice. But,

what about the policy value and social value? Consider the research in macro political

economy since the 1930s. Beginning with the work of Jan Tinbergen, e�orts were

made to assist policymakers in devising ways to stabilize business cycles.2 The

result was the volatility of business cycles has been reduced in the past 50 years

� even when we take current economic conditions into consideration. In addition,

the duration of economic expansions has increased in the United States (Granato

and Wong 2006) and around the world (She�rin 1989). In retrospect these:

salutary economic events occurred at approximately the same time that

quantitative political economic methodologies emphasized and were judged

on their ability to produce identi�ed and invariant predictions. Is this

relation a coincidence? A good case can be made that the guidelines

of the Cowles Commission and successor methodologies has contributed

to changes in business cycle behavior (since World War II). And while

they have received their share of criticism, these quantitative tools have

assisted policymakers by providing useful knowledge and creating a sys-

tematic scienti�c justi�cation for their actions (Granato 2005: 13).

As the preceeding chapters demonstrate, EITM applies to a variety of disciplines

and also solidify a lasting change so that social and behavioral scientists consider

it natural to unify formal and empirical analysis in their research designs. Or to

put it another way, true change will have been achieved when social and behavioral

scientists are viewed in this way by the �harder sciences�: there will be no need to

use the acronym EITM.

2The study of business cycles � a public policy and societal concern � was impetus for the
development of econometrics. Economic historian Mary Morgan (1990) points out that econome-
trician Jan Tinbergen's �rst:

...macrodynamic model was built in response to a request from the Dutch Economic
Association to present a paper in October 1936 on policies to relieve the depres-
sion...His model is a remarkable piece of work, involving not only building and esti-
mating a model of the whole economy but also using the model to simulate the likely
impact of various policies (page 102).
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EITM-inspired e�orts that lead to greater cooperation between the various sci-

ences can enhance policy acumen and aid society. Prior ways of conducting policy

research � where integration between the social sciences, natural sciences, and engi-

neering is rare � can lead to misleading predictions and policy failure. In particular,

downplaying or ignoring behavioral responses to various phenomena and new tech-

nologies may have negative rami�cations for public policies regarding energy (i.e.,

the smart grid), education, health, and numerous other important policy areas where

human behavior and human response is a factor.

Because it places an emphasis on modeling and testing analogues of human be-

havior, EITM translates at a technical level understood by the natural sciences, the

physical sciences, and engineering. This potential for enhanced understanding and

cooperation can be key in policy success. Among the most important broader im-

pacts of EITM� and one with the most lasting consequence � will be simply raising

awareness of the complexities and challenges involved with the linkage of models and

tests to the study of social, behavioral, and economic processes.
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