Homework 2. Due Wednesday January 31.

1. Frisch-Waugh with 2 regressors. Assume you regresss

$$
y_{i}=\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+\text { error } .
$$

In vector notation:

$$
Y=\beta_{1} X_{1}+\beta_{2} X_{2}+\text { error }
$$

Now

$$
\left(X^{\prime} X\right)=\left(\begin{array}{cc}
X_{1}^{\prime} X_{1} & X_{1}^{\prime} X_{2} \\
X_{1}^{\prime} X_{2} & X_{2}^{\prime} X_{2}
\end{array}\right) .
$$

Find the vector of parameters $\beta=\left(\beta_{1}, \beta_{2}\right)^{\prime}$, writing in terms of the inner products (like $X_{1}^{\prime} X_{2}, X_{1}^{\prime} Y, X_{2}^{\prime} Y$ etc.). It is not hard to invert $X^{\prime} X$, because the inner products are scalars. If you find it easier, you can assume without loss of generality that the units are chosen such that $X_{1}^{\prime} X_{1}=1$ and $X_{2}^{\prime} X_{2}=1$. Now regress

$$
X_{2}=X_{1} \xi+\text { error },
$$

and find the fitted value $P_{1} X_{2}=X_{1} * \hat{\xi}$ (remember that $P_{1} X_{2}$ is proportional to X_{1}) and the residual $M_{1} X_{2}=X_{2}-P_{1} X_{2}$.
Finally, regress

$$
Y=\left(M_{1} X_{2}\right) \beta_{2},
$$

and verify that the $\hat{\beta}_{2}$ that you get from this second regression is the same as the $\hat{\beta}_{2}$ from the original regression.
2. Computer question (continuation of homework 1). In Matlab, regress real per capita U.S. data consumption growth on income growth and the interest rate using the posted dataset. (This is the what you did in homework 1.)
a) Regress income growth on the interest rate and take the residual which we can call $M_{r} Y$.
b) Regress consumption growth on $M_{r} Y$ and compare the estimated coefficient to the one from the first regression.
c) Regress consumption growth on the interest rate and take the residual which we can call $M_{r} C$
d) Regress $M_{r} C$ on $M_{r} Y$ and compare the estimated coefficient to the one from the first and second regressions.

