ECONOMICS 7330 – Probability and Statistics, Fall 2023

Homework 9. Due Wednesday November 8.

1. (Hansen exercise 10.1.) Let X be distributed Poisson: $\pi(k) = \frac{\exp(-\theta)\theta^k}{k!}$ for non-negative integer k and $\theta > 0$.

(a) Find the log-likelihood function $l_n(\theta)$.

(b) Find the MLE (ML estimator) $\hat{\theta}$ for θ .

2. (Hansen exercise 10.2.) Let X be distributed as $N(\mu, \sigma^2)$. The unknown parameters are μ and σ^2 .

(a) Find the log-likelihood function $l_n(\mu, \sigma^2)$.

(b) Take the first-order condition with respect to μ and show that the solution for $\hat{\mu}$ does not depend on the solution for $\hat{\sigma}^2$.

(c) Define the concentrated log-likelihood function $l_n(\hat{\mu}, \sigma^2)$. (Notice, that this means that you consider it only as a function of σ^2 . You may sometimes encounter people talking about a concentrated (log-) likelihood function.) Take the first-order condition for σ^2 and find the MLE $\hat{\sigma}^2$.

3. (Hansen exercise 10.6) Let X be Bernoulli $\pi(X|p) = p^x (1-p)^{1-x}$.

(a) Calculate the information "matrix" for p by taking the variance of the score.

(b) Calculate the information for p by taking the expectation of (minus) the second derivative. Did you obtain the same answer?