ECONOMICS 7330 - Probability and Statistics, Fall 2023

Homework 9. Due Wednesday October 25.

1. Let X_{1}, \ldots, X_{N} be a sample of i.i.d. random variables with $\mathrm{E} \log \left(X_{i}\right)=0$ and $\operatorname{Var} \log \left(X_{i}\right)=1$. Let

$$
Z_{N}=\left(X_{1} * \ldots * X_{N}\right)^{\frac{1}{N}}
$$

Show that Z_{n} converges in probability to 1 .
Let

$$
Y_{N}=\left(X_{1} * \ldots * X_{N}\right)^{\frac{1}{\sqrt{N}}}
$$

Show that Y_{N} converges in distribution to a log-normal distribution.
2. Let Y_{N} be a χ^{2}-distributed random variable with N degrees of freedom and let $Z_{N}=\left(Y_{N}-N\right) / \sqrt{2 N}$. Show that Z_{N} converges in distribution to a $N(0,1)$ variable. (You can use without showing that the variance of a χ^{2} distribution with k degrees of freedom is $2 k$, although it follows easily from $E\left(x^{2}\right)^{2}=3$ and $E x^{2}=1$ for a standard normal.)
3. Assume $\sqrt{n}(\hat{\theta}-\theta)$ converges in distribution to $N\left(0, \sigma^{2}\right)$.

Use the delta rule (aka delta method) to find the distribution of
a) $\hat{\theta}^{4}$.
b) $\frac{1}{1+2 \hat{\theta}^{2}}$.
4. Assume that

$$
\sqrt{n}\binom{\hat{\theta}_{1}-\theta_{1}}{\hat{\theta}_{2}-\theta_{2}} \xrightarrow{d} N(0, \Sigma) .
$$

What is the asymptotic distribution of
a) $2 \hat{\theta}_{1}+\hat{\theta}_{2}$.
b) $\exp \left(\hat{\theta}_{1}+2 \hat{\theta}_{2}\right)$.
5. Assume that you have a sample of n observations from a Poisson distribution with probabilities $\pi(k)=\frac{\theta^{k} e^{-\theta}}{k!}$.
a) Write down the log-likelihood function $l_{n}(\theta)$.
b) Find the ML estimator $\hat{\theta}$.
5. Assume that you have a sample of n observations from a Pareto distribution with density $f(x)=\frac{\theta}{x^{1+\theta}}$.
a) Write down the \log-likelihood function $l_{n}(\theta)$.
b) Find the ML estimator $\hat{\theta}$.

