ECONOMICS 7330 - Probability and Statistics, Fall 2023

Homework 8. Due Wednesday October 25.

1. Let $X_1,...,X_N$ be a sample of i.i.d. random variables with $\mathrm{E}\log(X_i)=0$ and $\mathrm{Var}\log(X_i)=1$. Let

$$Z_N = (X_1 * \dots * X_N)^{\frac{1}{N}}$$
.

Show that Z_n converges in probability to 1.

Let

$$Y_N = (X_1 * \dots * X_N)^{\frac{1}{\sqrt{N}}}$$
.

Show that Y_N converges in distribution to a log-normal distribution.

- 2. Let Y_N be a χ^2 -distributed random variable with N degrees of freedom and let $Z_N = (Y_N N)/\sqrt{2N}$. Show that Z_N converges in distribution to a N(0,1) variable. (You can use without showing that the variance of a χ^2 distribution with k degrees of freedom is 2k, although it follows easily from $E(x^2)^2 = 3$ and $Ex^2 = 1$ for a standard normal.)
- 3. Assume $\sqrt{n}(\hat{\theta}-\theta)$ converges in distribution to $N(0,\sigma^2)$. Use the delta rule (aka delta method) to find the distribution of a) $\hat{\theta}^4$.
- b) $\frac{1}{1+2\hat{\theta}^2}$.
- 4. Assume that

$$\sqrt{n} \left(\begin{array}{c} \hat{\theta}_1 - \theta_1 \\ \hat{\theta}_2 - \theta_2 \end{array} \right) \xrightarrow{d} N(0, \Sigma) .$$

What is the asymptotic distribution of

- a) $2\hat{\theta}_1 + \hat{\theta}_2$.
- b) $\exp(\hat{\theta}_1 + 2\hat{\theta}_2)$.
- 5. Assume that you have a sample of n observations from a Poisson distribution with probabilities $\pi(k) = \frac{\theta^k e^{-\theta}}{k!}$.
- a) Write down the log-likelihood function $l_n(\theta)$.
- b) Find the ML estimator $\hat{\theta}$.
- 5. Assume that you have a sample of n observations from a Pareto distribution with density $f(x) = \frac{\theta}{x^{1+\theta}}$.
- a) Write down the log-likelihood function $l_n(\theta)$.
- b) Find the ML estimator $\hat{\theta}$.