## ECONOMICS 7330 – Probability and Statistics, Fall 2023

Homework 7. Due Wednesday October 18.

This homework has exercises from Bruce Hansen's book.

Most of the problems assume a random sample  $\{X_1, X_2, ..., X_n\}$  from a common distribution F with density f such that  $E[X] = \mu$  and  $var[X] = \sigma^2$  for a generic random variable  $X \sim F$ . The sample mean and variances are denoted  $\overline{X}_n$  and  $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ , with the bias-corrected variance  $s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$ .

1. (Hansen Exercise 6.1) Suppose that another observation  $X_{n+1}$  becomes available. Show that

(a)  $\overline{X}_{n+1} = (n\overline{X}_n + X_{n+1})/(n+1).$ (b)  $s_n^2 = [(n-1)s_n^2 + \frac{n}{n+1}(X_{n+1} - \overline{X}_n)^2]/n$ 

(This kind of updating is important in practice when n is very large and new observations regularly enter.)

2. (Hansen Exercise 6.11.) Let p be the unknown probability that a given basketball player makes a free throw attempt. The player takes n random free throws, of which he or she makes X of the attempts.

- (a) Find an unbiased estimator  $\hat{p}$  of p.
- (b) Find  $var(\hat{p})$ .

3. (Hansen Exercise 6.12.) Suppose we know  $\sigma^2$  and want our estimator to have a standard deviation smaller than a tolerance How large does n need to be to make this happen?

4. (Hansen Exercise 6.13.) Find the covariance of  $\hat{\sigma}^2$  and  $\overline{X}_n$ . Under what condition is this zero? (This exercise shows that the zero correlation between the numerator and the denominator of the t ratio does not always hold when the random sample is not from a normal distribution.)

5. (Hansen Exercise 6.14.) Suppose that  $X_i$  are i.n.i.d. (independent but not necessarily identically distributed) with  $E[X_i] = \mu_i$  and  $var[X_i] = \sigma_i^2$ . Find  $var[X_n]$