Bent E. Sørensen

ECONOMICS 7330 - Probability and Statistics, Fall 2023

Homework 4. Due Wednesday September 20.

1. For a random variable X with uniform distribution on the interval $[a, b]$ with density f show
(a) $\int_{a}^{b} f(x) d x=1$.
(b) $E[X]=\frac{1}{2}(b-a)$.
(c) $\operatorname{var}[X]=\frac{1}{12}(b-a)^{2}$.
2. Show that if X and Y are statistically independent, and a, b, c, d are real constants with $a<b$ and $c<d$, then

$$
P[a<X<b, c<Y<d]=P[a<X<b] P[c<Y<d] .
$$

3. Prove that for any random variables X and Y with finite variances (hint: use the law of iterated expectations):
(a) The covariance $\operatorname{cov}(X, Y)=\operatorname{cov}(X, E[Y \mid X])$.
(b) X and $Y-E[Y \mid X]$ are uncorrelated. (This implies they are independent if they are normally distributed. This is sometimes important.)
4. Suppose that Y conditional on X is $N(X, X)$ (that is, Normally distributed with both mean and variance equal to X). If $E[X]=\mu$ and $\operatorname{var}(X)=\sigma^{2}$ what are $E[Y]$ and $\operatorname{var}[Y]$? (hint: use the law of iterated expectations.)
5. Consider two random variables X and Y. Assume they both are discrete and that X can take the values 1,2 , and 4 while Y takes the values 0 and 2 . The probabilities for (X, Y) are shown in the following table:

$$
\begin{array}{llll}
& \mathrm{X}=1 & \mathrm{X}=2 & \mathrm{X}=4 \\
\mathrm{Y}=0 & 3 / 24 & 3 / 24 & 6 / 24 \\
\mathrm{Y}=2 & 3 / 24 & 5 / 24 & 4 / 24
\end{array}
$$

i) Find the marginal probabilities of X and Y . Mark clearly which are the marginal probabilities of X and which are the marginal probabilities of Y. Explain what the marginal probabilities measure.
ii) Find the means and the variances of X and Y.
iii) Are the events $\mathrm{X}=1$ and $\mathrm{Y}=2$ independent events?
iv) Are the random variables X and Y independent?
v) Find the probability $P(\{X>1\} \cap\{Y \leq 1\})$
vi) Find the conditional distribution of X given $Y=2$.
vii) Find the random variable $E(X \mid Y)$.
viii) Take the mean of the random variable that you derived in vii) and verify that it equals $E(X)$.

