ECONOMICS 7330 - Probability and Statistics, Fall 2022

Homework 3. Due Wednesday September 14.

- 1. Show that if the density satisfies f(x) = f(-x) for all $x \in R$ then the distribution function satisfies F(-x) = 1 F(x).
- 2. The skewness of a distribution (random variable X) with mean μ and standard deviation σ is skew = $\frac{E(X-\mu)^3}{\sigma^3}$.
- (a) Show that if the density function is symmetric about μ , then skew = 0.
- (b) Calculate skew for a random variable with density $f(x) = exp(-x), x \ge 0$.
- 3. Let X be a random variable with mean μ and variance σ^2 . Show that $E(X-\mu)^4 \ge \sigma^4$. (The fourth central moment is call *kurtosis*. This is a commonly used term that you need to know.)
- 4. Let $X \sim U[0,1]$ be uniformly distributed on [0,1]. Suppose X is truncated to satisfy $X \leq c$ for some $0 \leq c \leq 1$.
- (a) Find the density function of the truncated variable X.
- (b) Find $E[X|X \le c]$.
- 5. (a) Show that if X is uniformly distributed on the interval [0, 1] then $Y = -\theta \log(X)$ follows an exponential distribution with mean θ .
- (b) Explain why Jensen's inequality implies that $E(Y) > \log(2)$ for $\theta = 1$.