Bent E. Sørensen

ECONOMICS 7330-Probability and Statistics, Fall 2022

Homework 2. Wednesday August 31. Due Wednesday September 7.

1. Let B be an event and $A_{1}, A_{2}, \ldots, A_{n}$ be n mutually exclusive events. Define $A=$ $\bigcup_{i=1}^{n} A_{i}$. Also assume $P\left(A_{i}\right)>0$ and $P\left(B \mid A_{i}\right)=p$ for all i. Show that $P(B \mid A)$ is also equal to p. [A Venn diagram might help.]
2. (In this an the following questions, use the frequencies given as probabilities.) A study of college students finds that while 70 percent of college students are male, only 50 percent of college students with an A average are male. In contrast, 15 percent of female students have an A average. Assuming these results are accurate answer the following questions.
a) Are "being a male student" and "having an A average" independent? Why?
b) What is the probability that a randomly selected student has an A average?
c) What is the probability that a randomly selected male student has an A average?
3. $(20 \%$ of Midterm 1, 2005) Suppose that you consider 3 events: A: You pass the core exam. B: You get an A in statistics. C: The Astros (Houston sports team) wins the World Series. Assume that
$P(A)=1 / 3, P(B)=1 / 2$ and $P(C)=1 / 5$.
Further assume that the event C is independent of both A and B (and all subsets of these). Finally, we assume that $P(A \mid B)=2 / 3$.
a) What is the probability that you will pass both the core exam and get an A on the statistics exam?
b) What is the probability that either the Astros win or you get an A in statistics or you pass the core?
c) Assuming that a clairvoyant tells you that you will pass the core. Given that, what will be the probability that you will get an A in statistics?
d) What is the probability $P(A \bigcup C \mid B)$?
(The next three questions are from Hansen's book.)
4. Let $X \sim U[0,1]$. Find the PDF of $Y=X^{2}$.
5. Let $X \sim U[0,1]$. Find the distribution function of $Y=\log \left(\frac{X}{1-X}\right)$.
6. Define

$$
F(x)= \begin{cases}0 & \text { if } x<0 \tag{1}\\ 1-e^{-x} & \text { if } x \geq 0\end{cases}
$$

(a) Show that $F(x)$ is a CDF.
(b) Find the PDF $f(x)$.
(c) Find $E[X]$.
(d) Find the PDF of $Y=X^{1 / 2}$.

