Bent E. Sørensen

ECONOMICS 7344 - MACROECONOMIC THEORY II, Spring 2023

Homework 1, Wednesday March 22. Due March 29.

1. Define the lag polynomials $a(L)=a_{0}+a_{1} L$ and $b(L)=b_{0}+b_{1} L+b_{2} L^{2}$. (Notice: in the notes, and in class, it is often assumed $a_{0}=1$ and $b_{0}=1$. This is just for simplification and doesn't matter for any results since you can always re-scale the data and the lag-polynomial such that the first coefficient becomes unity (write a(L) as $a_{0} a^{\prime}(L)$ where the lag polynomial $a^{\prime}(L)=1+\frac{a_{1}}{a_{0}} L$ and similarly for $\left.b(L)\right)$. The constant a_{0} will not affect the properties of the lag-polynomial that we care about.)

Assume $a_{0}=1, a_{1}=-2, b_{0}=1, b_{1}=-.3$, and $b_{2}=-.5$.
i) If $x_{t}=2, x_{t-1}=-3, x_{t-2}=-2, x_{t-3}=9$, and $x_{t-4}=9$, what is $a(L) x_{t}$? and $b(L) x_{t}$? (This should be a number.)
ii) Find the roots of $a(L)$ and $b(L)$. Are the polynomial invertible (I think I called this stable in class)?
iii) What is $c(L)=a(L) b(L)$? What are the roots of $c(L)$ (hint: this should be easy)?
iv) Find the roots of $c(L)$. Is the AR-model $c(L) x_{t}=8+u_{t}$ stable?
v) Find the coefficients to the constant, L, and L^{2} in the lag-polynomial $a^{-1}(L)$.

Now define the polynomials $d(x)=1+.2 x$ and $e(x)=1+.5 x^{2}$.
vi) Find the roots of $f(L)=d(L) e(L)$. Is $f(L)$ invertible?
2. (24\% of midterm 1, Spring 2005) Assume that income follows the AR(1) process

$$
y_{t}=2+0.4 y_{t-1}+e_{t}(*)
$$

where e_{t} is white noise with variance 3 .
a) Is this time-series process stable?
b) Assume that y_{0} is a random variable. For what values of the mean $E\left(y_{0}\right)$ and the variance $\operatorname{var}\left(y_{0}\right)$ will the time series $y_{t} ; t=0,1,2, \ldots$ be stationary?
c) What is $E_{1} y_{3}$ if $y_{1}=5$ and $y_{0}=2$?
d) Write the infinite Moving Average model that is equivalent to the $\operatorname{AR}(1)$ model $\left(^{*}\right)$ [assuming that the process now is defined for any integer value of t. (Half the points are from getting the correct mean term.)
3. Assume that income follows the $\mathrm{AR}(2)$ process

$$
y_{t}=3+0.3 y_{t-1}+y_{t-2}+e_{t}
$$

where e_{t} is white noise.
a) Is this time-series process stable?
b) What is $E_{t-1} y_{t}$ if $y_{t-2}=5$ and $y_{t-3}=10$?
c) What is $E_{t-2} y_{t}$ if $y_{t-2}=5$ and $y_{t-3}=10$? What is $E_{t-1} y_{t}$ if $y_{t-2}=5$ and $y_{t-3}=10$?
4. Let

$$
x_{t}=\alpha_{0}+u_{t}+0.5 * u_{t-1}+u_{t-2},
$$

where u_{t} is white noise.
Find the auto-covariances for x_{t} in terms of σ_{u}^{2} (the variance of u_{t}).
5. Consider the $\mathrm{AR}(1)$ model under the assumption that it is stationary:

$$
y_{t}=\mu+a y_{t-1}+e_{t}
$$

a) Find the mean, variance, and first order autocovariance of y_{t}.
b) Using the results from a), use the formula for the conditional mean of a normal distribution to find $E\left(y_{t} \mid y_{t-1}\right)$ (in the linear model, you can assume normality for this purpose, the formulas won't depend on that).

