HOMEWORK 4. Due Friday April 22.

1. $(20 \%$ of final, Summer 2010). Assume that there are two states of the economy next year, "good" and "bad," each with probability 0.5 . In the good state aggregate consumption grows 4% and in the bad state it grows 0%. Now consider assets D and E. For these we know the payouts. For D the payout is 5 in the bad state and 15 in the good state, while for E the payout is 5 in the bad state and 5 in the good state. Use the CCAPM as it was derived in the handout. The safe rate of return is 1%.
a) What would be the prices of assets D and E?
b) What would be the returns (you can give gross or net, but state which) of assets D and E?
2. (10% of final 2010) Consider the CAPM-model. Assume the safe rate of interest is 10%, the mean return to the market portfolio is 20% and the variance of the return to the market portfolio is 0.02 . Now consider assets D and E . For these we know the distribution of the pay-outs. For D the payout is normally distributed with mean 100 and variance 10, while for E the payout is normally distributed with mean 200 and variance 40. Assume the covariance of the payout to asset D with the market return is 1 while the covariance of payout to asset E with the market return is 2 .
What would be the prices of assets D and E ?

The following questions are in the "Obstfeld-Rogoff" note, so you probably do not want to start on this before class Monday.
3. (Partial equilibrium.) Consider an agent with income ("output" in Obstfeld-Rogoff) $Y_{1}=10, Y_{2}^{A}=16$, and $Y_{2}^{B}=6$, where A and B are states of the world with $\pi^{A}=0.5$ and $\pi^{B}=0.5$. Assume $p^{A}=p^{B}, r=10 \%$ and the discount rate is $\beta=\frac{1}{1+r}$.
a) Assume the agent has quadratic utility and that the agent can trade in Arrow-securities for both state A and state B. Does the "PIH-relation" $C_{1}=E C_{2}$ hold?
b) Find C_{2}^{A} / C_{2}^{B}.
c) How many units of each Arrow-security does the agent purchase and how many units of the period 1 good? (this can be a negative number so "purchase" may mean sell.)

Now assume that the agent has utility function $U(C)=-\frac{1}{3} C^{-3}$.
d) Find C_{2}^{A} / C_{2}^{B}. (Give the intuition for why it does or does not change from the answer in part b). [This is probably a hard question]).
e) Find C_{1}.
f) Now assume $\frac{p^{A}}{p^{B}}=\frac{2}{3}$. Now find C_{1} and C_{2}^{S} for $S=A, B$ and check if $C_{1}=E C_{2}$.

