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1 Short Introduction to Time Series

A time series is a sequence of stochastic variables observed over time. Most of

what we do in economic modeling involves time series. If you have any dynamic

model, you will likely have agents maximizing expected utility or profits. Time

series models are designed to provide convenient, yet flexible, models that allow

for analytical or numerical expectations to be calculated. Time series models

also allow for convenient, parsimonious models of observed data to be estimated.

The modeling and estimation angles are highly complementary and uses the same

models, but modeling and estimation still involves different methods. This note is

about the basic models and, especially in the homeworks and the application to

the PIH model, with a focus on finding expected values of future variables. (We

will focus on time series estimation in the econometrics classes.)

A time series is a collection of stochastic variables x1, .., xt, .., xT indexed by an

integer value t. The interpretation is that the series represent a vector of stochastic

variables observed at equal-spaced time intervals. The series is also some times

called a stochastic process.

The distinguishing feature of time series is that of temporal dependence: the dis-

tribution of xt conditional on previous value of the series depends on the outcome

of those previous observations, i.e., the outcomes are not independent. For the

purpose of analyzing a time series we will usually model the time series over all the
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non-negative integers: xt ; t = {0, 1, ..,∞} or xt ; t = {−∞, .., 0, 1, ..,∞}. Time 1

or time 0 will be the first period that you observe the series. In a specific model, you

will have to be explicit about the initial value, as will be clear from the following.

1.1 Stationarity

Definition A time series is called stationary (more precisely covariance stationary)

if

E(xt) = µ ,

E[(xt − µ)2] = γ(0) ,

E[(xt − µ)(xt+k − µ)] = γ(k) = γ(−k) = E[(xt − µ)(xt−k − µ)]; k = 1, 2, ... ,

where γ(k) ; k = 0, 1.. are independent of t and finite.

There is a quite long tradition in time series to focus on only the first two moments

of the process, rather than on the actual distribution of xt. If the process is nor-

mally distributed all information is contained in the first two moments and most of

the statistical theory of time series estimators is asymptotic and more often than

not dependent on only the first two moments of the process. Consider a stationary

process: the γ(k)’s for k 6= 0 are called autocovariances and if we divide by the

variance we obtain the autocorrelations ρ(k) = γ(k)/γ(0) (note that this is a

special case of a correlation-coefficient corr(x, y) = cov(x, y)/(
√
var(x) ∗

√
var(y))

because the variances of xt and xt−k are identical by stationarity). These are the

correlation of xt with it own lagged values.
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Note that if ΣT is the matrix of variances and covariance of x1, ..., xT then

ΣT =



γ(0) γ(1) γ(2) . . . γ(T − 1)

γ(1) γ(0) γ(1) . . . γ(T − 2)
...

...
...

...
...

γ(T − 2) . . . . . . . . . γ(1)

γ(T − 1) γ(T − 2) . . . γ(1) γ(0)


.

So if we let ΩT be the matrix of autocorrelations, i.e. ΣT = γ(0)ΩT we will have

ΩT =



1 ρ(1) ρ(2) . . . ρ(T − 1)

ρ(1) 1 ρ(1) . . . ρ(T − 2)
...

...
...

...
...

ρ(T − 1) ρ(T − 2) . . . ρ(1) 1


.

Time series models are simple models for the (auto-) correlation of the xt’s that al-

low us to parameterize the T ∗(T+1)/2 variances and autocoveriances as functions-

of a much lower number of parameters.

Definition: A stationary process et with mean 0 is called white noise if γ(k) = 0

for k 6= 0. Of course this implies that the autocorrelation matrix is just an identity

matrix, so the standard OLS assumptions on the error term can also be formulated

as “the error term is assumed to be white noise.”

1.1.1 The lag-operator, lag-polynomials, and their inverses

The lag operator L is defined by Lxt = xt−1. We will also define the symbol Lk as

Lkxt = xt−k. Lag operators can be given a very precise mathematical definition,

which we will not do here (we would need much more background math), but for

us they first of all serve as a very compact notation, so don’t feel mystified.

You should think of the lag-operator as moving the whole process {xt ; t =

−∞, ...,∞}. Notice that it is here practical to assume that the series is defined for
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all integer t, rather than starting at some period 0—in applications this may not

always make sense and in these cases you may have to worry about your starting

values. We will define lag polynomials as polynomials in the lag operator as

follows. Let a(L) be the lag polynomial

a(L) = a0 + a1L + ... + apL
p

which is defined as an operator such that

a(L)xt = a0xt + a1xt−1 + ... + apxt−p .

This simply means that the equation above defines a(L) by the way if operates on

xt.

A key observation is that we can add and multiply lag-polynomials in exactly

the same way as we can add and multiply polynomials in complex variables. For

example, if a(L) = (1− aL) and b(L) = (1− b L) then

a(L)b(L)xt = (1−aL)(1−b L)xt = (1−aL)(xt−b xt−1) = xt−b xt−1−aL(xt−b xt−1)

which, after simplifying, gives you

a(L)b(L)xt = xt − (a+ b)xt−1 + ab xt−2 = (1− (a+ b)L+ abL2)xt .

Notice, that if we denote c(L) = 1 − (a + b)L + abL2, the coefficients of the lag

polynomial c(L) are equal to to the coefficients of the polynomial c(z) = 1− (a+

b)z + abz2 = (1 − a z)(1 − b z) where z is a real or complex variable. For a given

lag-polynomial a(L) we therefore define the corresponding z-transform (also a label

from the engineering literature) a(z) where z is a complex number. The point is

that if we define a(z) and b(z) as the complex polynomials we get from substituting

the complex number z for L then we know that a(z)∗b(z) is a complex polynomial

which we can denote c(z). Because the operations are similar, it is also the case
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that c(L) = a(L) ∗ b(L). Conceptually, c(L) is a function that works on a time

series and c(z) is totally different animal—we just use c(z) as a quick way to find

the coefficients of c(L).

One can invert lag-polynomials (although it is not always the case that an

inverse exist, as in the case of matrices). We use the notation

a(L)−1 or, occasionally (esp. among engineers), but don′t do it,
1

a(L)
.

a(L)−1 is defined as the operator such that a(L)−1a(L)xt = a(L)a(L)−1xt = xt for

any series x.

All problems concerning inversion of lag polynomials can be reduced to inver-

sion of the first order polynomial 1−az—we will show the details for the first order

polynomial. You all know the formula (valid for |a| < 1)

1

1− a
= 1 + a + a2 + a3 + ....

(If you are not fully familiar with this equation, then you should take a long look

at it, prove it for yourself, and play around with it. It is very important for the

following and in other contexts.)

For |a| < 1 we get

1

1− az
= 1 + az + (az)2 + (az)3 + ....

which converges if |z| = 1. In order for infinite polynomials like this to converge

(when a is numerically smaller than unity), the z-transform a(z) is defined only

for complex numbers of length 1, i.e., |z| = 1. We can therefore find the inverse of

the lag-polynomial 1− aL as

1

1− aL
= I + aL + (aL)2 + (aL)3 + ....

so

(1− aL)−1xt = xt + axt−1 + a2xt−2 + a2xt−3 + ....
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(Here is where one would need the math to be really rigorous to make precise the

conditions under which this infinite sum converges. In almost all case we work

with in macro, this is not a problem (for example, if x is stationary, it is clear that

the variance and mean converges for a numerically smaller than unity).

Inversion of a general lag polynomial.

It is well known that if a(z) = 1+a1z+....+akz
k is a kth order complex polynomial

then

a(z) = (1− α1z)(1− α2z)...(1− αkz)

where 1
α1
, ..., 1

αk
are the roots of the polynomial. Recall that the roots will be

complex conjugates (although sometimes real) if the coefficients of a(z) are real

numbers. Of course, the lag-polynomial a(L) factors the same way. This means

that

a(L) = (1− α1L)(1− α2L)...(1− αkL) .

The inverse of the general scalar lag polynomial is now simply defined by inverting

the “component” first order lag polynomials one-by-one. Consider the AR-model

(to be defined soon) of form

a(L)xt = µ+ ut .

Inverting the lag-polynomial, we have

xt = a(L)−1µ+ a(L)−1ut = a(L)−1µ+ (1− αkL)−1....(1− αkL)−1ut ;

because we can invert the stable first order lag polynomials one by one. What

about the first term? Because µ is a constant, Lµ = µ so instead if L, you put a

number 1 in the lag-polynomial, so you get

a(L)−1µ =
µ

a(1)
.
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Let us verify how this works for the stable lag polynomial with one lag:

(1− aL)−1µ = (1 + aL+ a2L2...)µ = µ+ aµ+ a2µ... = (1 + a+ a2...)µ =
1

1− a
µ .

Example: Consider the polynomial a(L) = (1+.3L−.1L2). This can be factored as

a(L) = (1+ .5L)(1− .2L). Since (1+ .5L)−1 = 1− .5L+ .25L2.... and (1− .2L)−1 =

1 + .2L + .04L2...., we have 1 + .3L − .1L2)−1 = (1 − .5L + .25L2....)(1 + .2L +

.04L2....) = 1− .3L+ .28L2...... This means that we can write the stationary model

xt = −.3xt−1 + .1xt−2 + ut = ut − .3ut−1 + .28ut−2 + ....

Finally, notice that to invert the stable model, I need to assume that it is stationary

because this is equivalent to the model having started at −∞.

The difference operator ∆ is defined as ∆ = I−L giving ∆xt = xt − xt−1.

1.2 AR models:

The most commonly used type of time series models are the auto regressive (AR)

models.

xt = µ + a1xt−1 + ... + akxt−k + ut ,

where the innovation ut is white noise with constant variance σ2. Here k is a

positive integer called the order of the AR-process. (The terms AR-model and

AR-process are used interchangeably.) Such a process is usually referred to as an

AR(k) process. Note that µ here is a constant and not the mean of xt (we try to

use somewhat consistent notation, but we do not reserve any particular symbols

for one single use.)

In empirical work, it is almost always (implicitly) assumed that xt and the lagged

x-variables are observed, while the innovations ut are not. The a coefficients can
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be estimated by regression (or maximum likelihood).

An AR model is a model of correlations between observations, but in macro-

modeling, we usually think of time as progressing and we are interested in con-

ditional means (or variances) at t conditional on where we were at t − 1. (For a

statistician, it does not matter if time was going backwards, and the model were

xt = µ + axt+1 + ut where ut is uncorrelated with all future observations. The

mean and standard deviations that is used for estimation are the same as for the

model xt = µ+axt−1 + et, where et is uncorrelated with all past observations. Can

you see that? It follows by logic, but if you are not comfortable with that, verify

it using the formula for the conditional mean in the normal distribution.) The

AR(k) model directly give this conditional expectation:

Et−1xt = µ + a1xt−1 + ... + akxt−k .

When we maximize, say, utility, over the future expected outcomes, we need to do

some work. We will illustrate that in the case of the PIH-model later.

Most of the intuition for AR processes can be gained from looking at the AR(1)

process, which is also by far the most commonly applied model. Consider the

process:

xt = µ + axt−1 + ut (∗) .

If |a| < 1 the process is called stable. For instance, assume that x0 is a fixed

number. Then x1 = µ + ax0 + u1 using (*). You can use (*) again and find

x2 = (1 +a)µ+a2x0 +au1 +u2. Continuing this (often called “iterating” equation

(*) or “recursive iteration” or (best) “recursive substitution”) you get

xt =
1− at

1− a
µ+ x0a

t + at−1u1 + ... + aut−1 + ut .
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If the ut error terms are i.i.d. with variance σ2 then

var(xt) = σ2[1 + a2 + ...+ (a2)(t−1)] =
σ2 (1− a2t))

1− a2
→ σ2

1− a2
,

for t→∞.

Notice that this process is not stationary if x0 is fixed (as the variance varies with

t). However, for large t the process is approximately stationary (the variance is

approximately σ2/(1 − a2) independently of t), and if the process was started at

−∞ then x0 would be stochastic with variance σ2

1−a2 . So the stationary AR(1)

is a process that we imagine started in the infinite past. Using the lag operator

methodology, we have (for µ = 0 for simplicity)

(1− aL)xt = ut ⇒ xt = (1− aL)−1ut ⇒ xt = ut + aut−1 + a2ut−2 + ....

Compare this to what we obtained from iterating the process, and you can see that

lag-operator manipulations in essence is nothing but a convenient way of iterating

the process all the way back to the infinite past.

Notice that when we simulate complicated dynamic models and want a stationary

distribution (assuming the model has one), we often start from a fixed value and

simulated future outcomes. Then to consider the stationary distribution, we dis-

card the first many observations (where “many” depends on the actual model, the

closer it is to being non-stationary, the more you need). However, for simple AR

models, we can directly draw the first observation as a random variable with the

stationary mean and variance and as you iterate future values, they will have this

same mean and variance.

Notice what happens if a → 1: the variance tends to infinity and the stationary

initial condition can not be defined - at least in typical case as where ut ∼ N(0, σ2)
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since a normal distribution with infinite variance is not well defined.

The AR(1) process

xt = xt−1 + ut ,

with ut iid white noise, is called a random walk. Random walk models (and other

models with infinite variance) used to be considered somewhat pathological (they

also behave “strangely” when used in regression models). Hall’s 1998 demon-

stration that consumption is a random walk (more precisely a martingale) in a

not-too-farfetched version of the PIH model, was therefore a major surprise for

the profession. (The difference between a random walk and a martingale is mainly

that in a random walk the variance of the ut term is constant, which it need not

be for a martingale.)

It is commonly assumed in modeling (based on empirical work) that log wages

can be described as a deterministic component (a function of age and education,

in particular) and a random component which is the sum of a random walk and a

white noise component. (The random walk component may capture a regular job

with employers setting annual wage increases, rather than levels, and the white

noise component capturing one-off opportunities or misfortunes.)

The AR(k) model can also be written

a(L)xt = µ + ut ,

where the log-polynomial a(L) associated with the AR(k) model is

a(L) = 1− a1L− ...− akLk .

(Note, I here us the term “associated with,” but you may encounter different ways

of denoting the lag-polynomial “of” the AR(k) model. This usually doesn’t create
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confusion.)

We say that the AR(k) model is stable if all roots of the lag-polynomial a(L)

are outside the unit circle.

Example: If you are given for example an AR(2) process, like

xt = 1.5xt−1 + xt−2 + ut ,

you should be able to tell if the process is stable. In the example we find the roots

of the polynomial 1− 1.5z − z2 to be

ri = .5 ∗ (−1.5±
√

2.25 + 4) ,

so the roots are –2 and .5. Since .5 is less than one in absolute value the process

is not stable.

Stability versus stationarity:

Theorem: A stationary model is stable.

The same theorem said differently: If a process is not stable it is not station-

ary.

The proof (for the AR(1) case) follows from the derivation above. For a non-

stable model the variance goes to infinity so it cannot be constant and finite.

The “opposite” statement is not true. It is possible for a model to be stable, but

not stationary. E.g., this will be the case for a stable model that starts from some

(usually fixed) x0 in period 0, unless x0 is a random variable with exactly the right
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mean and variance.

1.3 MA models:

The simplest time series for modeling are the moving average (MA) models:

xt = µ + ut + b1ut−1 + ... + bput−p = µ + b(L)ut,

where the innovation ut is white noise and the lag-polynomial is defined by the

equation. Observe that for the MA-model, µ is the mean of xt (which is not the

case for the AR-model). The positive integer p is called the order of the MA-

process. MA processes are quite easy to analyze because they are given as a sum

of independent (or uncorrelated) variables. In computational economics, you will

typically draw the innovations from a random number generator.

MA-models are not so easy to estimate econometrically: since it is only the xt’s

that are observed, the ut’s are unobserved, i.e., latent variables, that one cannot

regress on.

Consider the simple scalar MA(1)-model (I leave out the mean for simplicity)

(∗) xt = ut + but−1 .

If ut is an independent series of N(0, σ2
u) variables, then this model implies that xt

has mean zero and autocovariances: γ(0) = (1+b2)σ2
u; γ(1) = γ(−1) = bσ2

u; γ(k) =

0; k 6= −1, 0, 1. (Notice that I here figured out what the model says about the

distribution of the observed x’s. In economic models, the ut terms may have an

economic interpretation, such a wage raise or increment in productivity, but in

many empirical applications of time series the MA- (or AR-) model simply serves
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as a very convenient way of modeling the autocovariances of the x− variables.)

The autocorrelations between the observations in the MA(1) model are trivially 0,

except for ρ(−1) = ρ(1) = b
1+b2

.

Consider equation (*) again. In lag-operator notation it reads

xt = (1 + bL)ut ,

which can be inverted to

ut = (1 + bL)−1xt = xt − bxt−1 + b2xt−2 − ...

It is quite obvious that this expression is not meaningful if |b| ≥ 1 since the power

term blows up (think of the stationary case, where it is clear that the variance of

bkxt−k goes to infinity). In the case where |b| < 1, the right hand side converges

to a well defined random variable (under standard assumptions).

Definition: The scalar MA(q) model is called invertible if all the roots of the

lag-polynomial b(L) (strictly speaking the corresponding z-transform b(z)) are

outside the unit circle.

An ARMA model is a model that has both AR- and MA-components. For ex-

ample, the model

xt = .3xt−1 + .1xt−2 + ut + .4ut−1

is called an ARMA(2,1) model. The ARMA model inherits the properties of AR

and MA models. An ARMA-model, using lag-operators, takes the form

a(L)xt = µ+ b(L)ut ,

where a(L) and b(L) are lag-polynomials, which almost always are of finite order.

If the AR-component of the ARMA-model is stable, we say the ARMA model is
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stable and if it is stationary and defined for all t, we can write the model as on

infinite MA model:

xt = µ′ + a−1(L)b(L)ut ,

where the constant µ′ = a−1(1)µ. This is a result we will need when covering the

PIH-model in details. In economics, we often start from an AR or ARMA model

which describes behavior and find the corresponding MA model:

xt = µ + ut + b1ut−1 + ... + bkut−k + ... .

If the u terms in an economic model are fundamental innovations (shocks), it is

very common to describe the behavior of the model via “impulse response func-

tions,” which is a terms from engineering where the u’s are called impulses and

the interest is in how future x’s are affected. We can directly read that impact on

xt of a one unit shock at t − 1 is b1, which implies that a unity shock at period t

impacts xt+1 by an amount b1. Similarly, a one unit shock at t impacts xt+k by

an amount bk, etc. The b-coefficients as a function of the lag is called an impulse

response function. There are thousands and thousands of papers showing impulse

response functions, typically for vector valued time series, but these are derived

using the same logic and tools are we here discuss in the univariate case.

If the MA component of the ARMA model is invertible, we can also write xt

as an infinite AR-model:

a(L)b−1(L)xt = µ′′ + ut .

In empirical work, xt is our observed data, and this formula shows how the ut

terms could be found from the xts, if those were observed since “way back.”

More on recursive substitution. Consider a stationary AR(2) model:

xt = µ+ a1xt−1 + a2xt−2 + ut .
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We can directly observe Et−1xt by setting the innovation term to zero, but what

about Et−2xt? We can use the law of iterated expectation Et−2xt = Et−2{Et−1xt}:

we know what Et−1xt is as a function of xt−1 and further lags:

Et−1xt = µ+ a1xt−1 + a2xt−2 + ut . (∗∗)

Then we take

Et−2Et−1xt = µ+ a1Et−2xt−1 + a2xt−2 + ut .

Here, Et−2xt−1 involves taking an expectation “one step ahead,” so it has the same

form as (**) with the t-index moved on period back, so we have

Et−2Et−1xt = µ+ a1(µ+ a1xt−2 + a2xt−3) + a2xt−2 ,

where the term in parenthesis is the right-hand side of (**) with the innovation

set to 0 and the time index “moved on period back.” Then we simplify and get

Et−2xt = (1 + a1)µ+ (a21 + a2)xt−2 + a2xt−3 ,

where all terms on the right-hand side now are deterministic or have time indices

of t− 2 or earlier.

Solving economic models, we may be more interested in expected future values.

You can “iterate forward” or you can “iterate backwards,” as we just did but then

move the time index forward which is OK because relations between the x’s only

depend on the time distance between them, so moving the t index two periods

ahead everywhere, we get

Etxt+2 = (1 + a1)µ+ (a21 + a2)xt + a2xt−1 .

It is a super important to be able to find the expectations of future values con-

ditional on present and/or past values as an agent’s behavior (consumption, say)

depends on present and future expected values (of income, say).
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