ECON 8331 - ECONOMETRICS II. 8/22

Some useful tools that we will use.

1. Some standard results from statistics:

- If X is a vector with variance Σ, the variance of $A X$ is $A \Sigma A^{\prime}$, to not put the transposition sign the wrong place, especially because A is not necessarily quadratic. For $A=\iota$ (a vector of ones), you get the variance of the sum of elements in X.
- You should remember from Econometrics I that if $\operatorname{Var}(X)=\Sigma$ there is a square root C of Σ so that $\Sigma=C C^{\prime}$ and $C^{-1} \Sigma C^{-1^{\prime}}=I$. There are many square root matrices and you can choose one that is upper triangular.

2. The multivariate (N-dimensional) normal distribution has density

$$
\frac{1}{\left((2 \pi)^{N / 2}|\Sigma|\right)^{0.5}} \exp \left\{-0.5(X-\mu)^{\prime} \Sigma^{-1}(X-\mu)\right\}
$$

(Note, I often forget the π term which does not affect the ML estimator.)

- For dimension 2, we can write

$$
\begin{gathered}
\frac{1}{2 \pi \sqrt{\sigma_{1}^{2} \sigma_{2}^{2}-\sigma_{12}^{2}}} * \\
\exp \left\{-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-\frac{2 \rho\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right)\right\},
\end{gathered}
$$

where ρ is the correlation between x_{1} and x_{2}. This simplifies to the product of two univariate normal distributions, if the covariance is zero (which implies, for the normal, that x_{1} and x_{2} are independent).
3. We also need to consider a multivariate normal distribution of form $\left(X^{\prime}, Y^{\prime}\right)^{\prime}$ (this is just a way to write a partition column vector with X on top). The mean is $\left(\mu_{X}^{\prime}, \mu_{Y}^{\prime}\right)^{\prime}$, the variance of X is Σ_{X}, of $Y \Sigma_{X}$ and the covariance $E\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)^{\prime}=\Sigma_{X Y}$. (Notice that we cannot just say the covariance as the dimension depends on which is the "first" variable - the covariance matrix is not in general symmetric. Although, I often do it anyway, but make sure the dimensions match.) Also notice where the transposition sign goes, if put it on X the expression is meaningless, it isn't even a legal mathematical operation in that case if the dimensions of X and Y differs.

- The mean of X conditional on Y is $\mu_{X}+\Sigma_{X Y} \Sigma_{Y}^{-1}\left(Y-\mu_{y}\right)$.
- The conditional variance of X is $\Sigma_{X}-\Sigma_{X Y} \Sigma_{Y}^{-1} \Sigma_{Y X}$.

In general, the conditional density of X, if Y is observed to be Y_{0} is $f\left(X \mid Y_{0}\right)=f\left(X, Y_{0}\right) / f\left(Y_{0}\right)$. We can also treat Y_{0} as a random variable here, in which case we usually drop the 0 . (That is how you prove the previous result, but we will not check that).
4. The probability that $X \in A$ conditional on Y is $\int_{x \in A} f(x \mid Y) d x$.
5. $f(x \mid x>a)$ is $f(x) /(1-F(a))$.

