
ECONOMETRICS II, Fall 2021

Bent E. Sørensen

Introduction to Panel Data

A panel data set (or just a panel) is a set of data (yit, xit) (i = 1, . . . , N ; t =

1, . . . T ) with two indices.

Assume that you want to estimate the model

yit = Xitβ + εit

where var(εit) = σ2, yit is a scalar, and xit is 1× k vector containing k regressors.

There are three well-known (and inexpensive) textbooks on panel data (all quite good

and likely available in paperback):

Hsiao: Analysis of Panel Data, Cambridge University Press, 1986.

Baltagi: Econometric Analysis of Panel Data, Wiley, 1995.

Arellano: Panel Data Econometrics, Oxford University Press, 1995.

Wooldridge: Econometric Analysis of Cross Section and Panel Data, 2nd Edition

The Hsiao book is a little dated by now and more focussed on micro-applications, but it

is still good to read. Arellano’s book is probably the most comprehensive and it is very

well written. The only draw-back is that is it covers more ground that you would want

if you are new to field. A bit the same for Wooldridge’s book. Baltagi’s book is also

good. This note here is intended to get you started, see also the much-used first-year

graduate textbook by Greene, Ch. 14. (By the way: Arellano’s book has an appendix on

GMM that looks quite accessible.) You should check for new versions and I recommend
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checking Arellano’s web-page (http://www.cemfi.es/ arellano/) for recent work if you

need to go deeper.

Examples

1. Assume you have quarterly observations of ys, xs for the period (say) 1960.1 →

1989.4. If you want to stress that quarters are different from years, you can write,

e.g., the ys data as

yit where i is year and t is quarter

and you may feel like storing the y-data in a matrix

Y = [yit] =


y1960,1 y1960,2 . . . y1960,4
...

...
y1989,1 . . . . . . y1989,4


Usually one doesn’t write the model with quarterly data like this. Example 1

demonstrates that whether you write ys, s = 1, . . . , 160 (NT ) or yit (i =

1, . . . , 40 (N); t = 1, . . . , 4 (T )) is just a convention. Albeit often a practical

convention which we use if we want to work with models that display different

features for the t-index than for the i index.

2. Very typical micro example. Assume that you observe (say) wages wit and experi-

ence (and age, education,...) Xit for a sample of individuals i = 1, . . . , N over

time t = 1, . . . , T.

This is the type of panel that most people think of when you say “panel data.”

For this type of data you usually have N large (thousands) and T small (often

2 or 3 and 30–40 at the most).

A much utilized data set in the US is the PSID

https://psidonline.isr.umich.edu/GettingStarted.aspxa
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panel which have been following a sample of 4000 + US families since 1968.

About 3,200 articles have been published using the PSID by 2012 .

A lot of theoretical econometric work on panel data is relevant for small T, large N

and until very recently “panel data” was considered a microeconometrics subfield.

(“Small” T and “large” N means that one relies on asymptotic theory derived

keeping T fixed and letting N go to infinity.) For this class, however, we are more

interested in macro-panels with a rather small N dimension (by the standards of,

say, labor-economists). The econometric issues are somewhat different for such

panels.

3. A typical macro example is a “consumption function” (simplified a bit)

cit = βyit + εit ; i = 1, . . . , 50 t = 1963, . . . , 1990

where i indices U.S. states, cit is state level consumption, yit is state level GDP

(called GSP).

This type of panel is often called a “square panel.”

If you have the same numbers of observations for each i, as implicitly assumed

above, we talk about a balanced panel (otherwise unbalanced. In macro, panels

are typically balanced).

Estimation

Estimation of the model

yit = xitβ + εit ; var(εi) = σ2 and εit iid

poses no new problems. Since the double index is just a convention you “stack” the data

in vector-matrix form

y = X β + e ,
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where y and X are of dimension (NT × 1) and (NT ×K), respectively. Typically the

data are stacked as

y =



y11
y12
...
y1T
y21
...
yNT


and X =



x11
x12
...
x1T
x21
...
xNT


or

y =



y11
y21
...
yN1

y12
...
yNT


and X =



x11
x21
...
xN1

x12
...
xNT


.

(The Y data can be turned into vector-form any which way you want; however, the y’s

and the x’s has to be stacked the same way.) The GAUSS program stacks the data using

the RESHAPE command, which follows the convention of first stacking the data from

the first row of the matrix, then the second row, etc.

The OLS estimator of β is now the standard OLS estimator: β̂ = (X ′X)−1X ′y.

Typically, we write the data in panel form because we want to model some feature

differently for, e.g., states than for time-periods. The simplest example (which is used

“all the time” in applied work) is the (one-way) fixed-effect model.

(1) yit = αi + βxit + εit ; εit iid(0, σ2).

Note that since there is now a constant for each i, there can be no constant included

in the xit vector.
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The model (1) is nothing but a Dummy Variable model. Think of Ex. 1. Usually

the dummy variable model is written as

(∗) ys = α1D1s + α2D2s + α3D3s + α4D4s + βXs

where

Dis =

{
1 if period s is in the i′th quarter
0 otherwise

The notation in (1) is nothing but a more handy notation for (*). For the model

with a dummy variable for each of (say) 2000 individuals in a panel, it becomes very

impractical to use the notation (*). Since (1) is a dummy variable model the X matrix

for OLS estimation of (1) is

X =



1 0 . . . 0 x11
...

...
...

...
1 0 0 x1T
0 1 . . . 0 x21
...

...
...

...
0 1 0 x2T
...

...
...

...
0 0 1 xN1
...

...
...

...
0 0 . . . 1 xNT



,

of dimension NT×(N+K).

The estimator of (α1, . . . , αN , β) is (X ′X)−1X ′Y. Simple! Except that your X ′X

matrix is now (N +K)× (N +K). In a typical micro panel (N > 1000) you cannot

invert X ′X by brute force (the computer runs out of memory). So what to do? Make

use of the Frisch-Waugh theorem. (This is a result which often comes in handy.)

The Frisch-Waugh theorem shows how to estimate the parameter vector β2 from

the model

y = X1β1 + X2β2 + ε
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without estimating the full model in one go, but in such a way that the estimated β̂2 is

equal to the estimate one would get, had one estimated the full model. Here X1 and X2

are 2 groups of regressors (think of the “dummy-variable part” and the other regressors

above as X1 and X2, resp.)

Step 1. Regress y on X1 and calculate the residuals ỹ. (The estimated β̃1 is not in

general equal to the estimate you would get from the full model.) Regress X2 on X1 (if

there are several regressors in X2 one can do it one-by-one) and calculate the residuals X̃2.

Step 2. Regress ỹ on X̃2. This gives the OLS estimator β̂2 from the full model.

Step 3. (Often not stated as part of the theorem.) You can find β̂1 (the OLS esti-

mator from the full model), by regressing y −X2β̂2 on X1.

You can prove the Frisch-Waugh theorem by using partitioned matrices (see Greene’s

textbook), or more elegantly by using projection theory. The application of Frisch-

Waugh’s theorem here is to first regress y on the N “dummy-variable columns” of the

X-matrix.

Note that the first N columns in X are orthogonal to each other, so it is only

the Xit column(s) which are not orthogonal to each of the “dummy-variable columns”
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Regressing X2 = (Xit) ; i = 1, ..., N ; t = 1, ..., T on

X1 =



1 0 . . . 0
...

...
...

1 0 . . . 0
0 1 . . . 0
...

...
...

0 1 . . . 0
...

...
...

0 0 . . . 1
...

...
...

0 0 . . . 1



,

can be done by regressing on each column one-by-one since the columns are orthogonal.

(This follows, for example, from the Frisch-Waugh theorem.)

The regression of X2 (for simplicity consider the number of non-dummy regressors

to be 1) on Z1 = (1, ..., 1, 0, ..., 0, ..., 0, . . . , 0)′ is simply Z1X2

Z′
1Z1

=
∑

t
X1t

T
= 1

T

∑
tX1t often

denoted X1. or just X1. , called the “state-specific mean.” (In the case where i is state,

otherwise “person-specific mean”, etc.) More precisely, it is the “state 1 specific mean”,

but similar formulas hold for regression on the other columns i = 2, ..., N .

The residuals from the regression on Z1 are

X1t − X1. and similarly
Xit − Xi. for general i

Now you get β̂ by regressing yit on (Xit −X i.) by standard OLS.

Often we do not care about α̂i, but sometimes we do and we get the estimate

from plugging the OLS estimate of β into the model

yit = αi + βXit + εit.

We have already found β̂ and we can therefore find α̂i from the regression model

(yit − β̂Xit ) = αi + uit ,
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where you recall that the right-hand side is shorthand for dummy variables. From dummy

variable theory we know that the OLS estimator is

α̂i = (yit − β̂Xit) averaged over t

= yi.− β̂Xi. .

Note that in the fixed-effect model with dummy variables αi one cannot estimate

the coefficient to a regressor which is only a function of i .

E.g., the model (without the error terms)

YUK,1 = αUK +XUK β
YUK,2 = αUK +XUK β
YUK,3 = αUK +XUK β
YUS,1 = αUS +XUS β
YUS,2 = αUS +XUS β
YUS,3 = αUS +XUS β

The X matrix is 

1 0 XUK

1 0 XUK

1 0 XUK

0 1 XUS

0 1 XUS

0 1 XUS


and since the third column is XUK × (first column) + XUS × (second column) the

matrix is singular = perfect multicolinearity.

Dummy variables for each time period (“time-fixed effects”) are treated the same way

and the inclusion of both state- and time-fixed effects is easily handled by removing the

time-specific and the state-specific averages sequentially.

In Asdrubali, Sørensen, and Yosha (1996), the inclusion of time-fixed effects is cru-

cial for the interpretation of the regressions as risk sharing estimations. As argued, for

example by Cochrane (1991), there are reasons to believe that it is more robust to include

a constant in a cross-sectional risk sharing regression than it is to control for aggregate
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consumption. In this connection, if is important to realize that a panel regression with

time-fixed effects results in an estimate that is a weighted average of cross-sectional re-

gressions run period by period.

Consider the OLS formula:

β̂ = ΣtΣiyit(xit − x.t)/ΣtΣi(xit − x.t)2 .

In the summation over, e.g., the x’s we need to sum over all the observations in any order

we choose, so we can choose to sum over the i-index first. We can rewrite the formula as

β̂ =
1

Σt Σi (xit − x.t)2
Σt Σi yit(xit − x.t)

=
1

ΣtΣi(xit − x.t)2
Σt [ Σi (xit − x.t)2 Σiyit(xit − x.t)/Σi(xit − x.t)2 ]

= Σt wtβt

where the period-by-period weights wt are given by

wt =
Σi (xit − x.t)2

Σt Σi (xit − x.t)2

and the coefficient βt is given by

βt = Σi yit(xit − x.t)/Σi(xit − x.t)2 .

The βt-coefficient is nothing but the coefficient in a cross-sectional OLS regression using

period t data. Also note that the wt weights sum to 1 and that periods with high variance

of the regressor (Σi(xit − x.t)2 large) gets more weight.

If you have both time-fixed effects and cross-sectional fixed effects in your model ; i.e.,

yit = µi + νt + βxit + eit ,

the OLS-estimator can be found by regressing yit on yit− yi.− y.t + y.. on (Xit−X i.−

X .t +X ..) by standard OLS. The last term corrects for the fact that you implicitly have
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subtracted the constant twice and if you don’t allow for a constant in this OLS regression

you have to correct for that.

If you subtract the time and cross-sectional means and then have, say, Stata, run the

OLS regression, you need to adjust the standard errors, because you have used N+T −1

degrees for freedom before sending the data to the regression. Y

If you have missing data, you need to make sure that all means are calculated on the

same data and those are the same used in the regression (so if there one (i,t) pair where,

say, y, is missing that has to be dropped before you calculate means for regressors).

More importantly, if you have a nonbalanced dataset you can NOT subtract more than

one (i, t, or more complicated) mean and get it right. You can use explicit dummies,

if the dimensions allow, otherwise more specialized software. I have use the comment

”reghdfe” in Stata (this is an ad-on that you have to download).

Modeling the variance

In panel data sets, it is often reasonable to expect that the variance of the error term

is different for each state (person, ...) or time period. For example, considering the

value of output of states or countries, there is no doubt that oil-states display higher

variance than other states. Or maybe consumption patterns in neighboring states are

more similar to each other than they are to those of more distant states. In principle the

econometrics is simple. If the NT ×NT matrix of residuals is Ω then the GLS estimator

of β is β̂ = (X ′Ω−1X)−1X ′Ω−1y. The feasible GLS estimator that one usually needs to

use is a 2-step estimator, where one first performs OLS and then estimates Ω̂ and plugs

the estimated Ω into the GLS formula.

Occasionally, one may want to estimate β by OLS, even if the error covariance matrix

is Ω. In this case, one still needs to estimate Ω since the variance of the OLS estimator
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then is given by (X ′X)−1X ′ΩX (X ′X)−1. In Asdrubali, Sørensen, and Yosha (1996),

we estimated a complicated Ω matrix, but since the estimated Ω̂ was likely to be impre-

cise, we found it unattractive to invert it and therefore used OLS with “GLS errors.”

(This is sometimes called a “generalized linear model.”) In the article “Consumption

and Aggregate Constraints: Evidence from U.S. States and Canadian Provinces” by Os-

tergaard, Sørensen, and Yosha (JPE 2002), we did invert the Ω matrix at the prompting

of a referee; my software/memory couldn’t handle the size of the matrix so I spent a

long time figuring out how to do it by splitting it up in smaller sub-matrices—you don’t

want to know the details, but I have the program if you ever need it.

For simpler models, when the dimension of Ω is too large to keep in memory, one can

often transform the data to be independent. (Formally, this means calculate ỹ = Ω−1/2y

and X̃ = Ω−1/2X and then run OLS on X̃ and ỹ.)

As the simplest example, consider the model

yit = Xitβ + εit

where var(εit) = σ2
i . (Each “state” has a different variance.) The model may or may not

contain fixed effects, that doesn’t affect the following. Such a model is easily estimated

by 2-step estimation approximation of Maximum Likelihood (ML). The variance matrix

takes the form

Ω =



σ2
1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...
. . .

...
0 · · · σ2

1 · · · 0 · · · 0
...

...
. . .

...
...

0 · · · 0 · · · σ2
N · · · 0

...
. . .

...
...

...
. . .

...
0 · · · 0 · · · 0 · · · σ2

N


.

(Assuming the data are stacked with state 1’s data first, then state 2, etc.) The 2-step

(feasible GLS) estimator’s first step is to estimate the model by OLS, and then estimate
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the Ω matrix from the residuals and transform the data to have diagonal covariance

matrix. In practice, estimate σ̂2
i =

∑T
t=1 e

2
it, where the (eit) matrix is the residuals from

an OLS regression; then transform the data to ỹit = yit/σ̂i and x̃it = xit/σ̂i, and run

OLS on the transformed data. (Iterating the process can be expected to be close to the

Maximum Likelihood estimator—I am not myself sure of the exact conditions for this to

be true, it will very rarely matter in practice.) This is, of course, a standard correction

for heteroskedasticity. In Asdrubali, Sørensen, and Yosha (1996), it was found that cor-

recting for state-specific heteroskedasticity had some effect on the estimates.

One may also want to correct for time-specific heteroskedasticity (similar) or both state-

and time-specific heteroskedasticity. In the latter case, the variance matrix becomes

more complicated, but again one simply adjust the data by the estimated time- and

state-specific standard deviations.

If, say, the T dimension is low, one may want to allow for a totally general pattern

of time- (auto-) correlation. Assume now that the data are stacked as above, the vari-

ance matrix then takes the form

Ω =


Γ . . . 0
...

. . .
...

0 . . . Γ

 .

The Ω matrix has the form Ω = I ⊗ Γ, where “⊗” is the so-called Kronecker product,

which signifies that each element in the first matrix gets multiplied by the second ma-

trix. (Here I is an N×N identity matrix and Σ is the variance-covariance matrix for the

T observations for state i, assumed to be the same for each i.) The Γ-matrix contains

T ∗(T +1)/2 parameters and cannot be estimated from a single time series (therefore the

whole topics of time series analysis is mainly about constructing parameter-parsimonious

models for Γ), but it can be estimated from a panel with N > T . The Γ matrix is easily

estimated after a first step estimation as Γ̂st = 1
N

ΣN
i=1eiseit ; s = 1, ..., T , t = 1, ..., T .
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One can fairly easily show that that (I⊗Γ)−1 = I⊗Γ−1 and one can then use the standard

GLS estimator: β̂ = (X ′ Ω−1X)−1(X ′ Ω−1 y). As usual, the problem is how to invert

the NT−matrix Ω, but if one defines Xi = xit ; t = 1, ..., T and yi = yit ; t = 1, ..., T

then it is easy to realize (using partitioned matrices) that

X ′Ω−1X = ΣN
i=1X

′
i Γ−1Xi ,

and similarly for X ′Ω−1 y . So only matrices of dimension T × T need to be inverted.

For the 2-step estimator the calculation will, of course, involve Γ̂ rather than Γ.

In Asdrubali, Sørensen, and Yosha (1996), we postulated a simple AR(1) model for the

time series dependence of the residuals. (In our experience with estimating risk sharing

panel data models on U.S. states and OECD countries, it has little effect on the esti-

mates to control for auto-correlation.) For cross-correlation between states, we estimated

a 50 × 50 unrestricted variance-covariance matrix (likely to be imprecisely estimated).

The problem with modeling spatial correlations is that there is no obvious parsimonious

model. Some suggestions is to let the variance decline with distance (analogously to

the AR(1) model), but is there any really reason to believe that, e.g., Massachusetts is

more similar to a nearby rural state like Maine, than it is to another financial center like

Chicago? It is hard to know, and hard to test for.

Random Effect Models

The most commonly used variance model is the “random effect model.” The mate-

rial is here as a (rigorous) introduction to the topic. The textbooks mentioned contain

much more material on random effect models. One reason to cover it here is that it

gives a nice example of the way one has to analytically figure out how to invert large

covariance matrices in panels.
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The (one-way) random-effect model takes the form

(∗) yit = Xitβ + µi + εit ; i = 1, . . . , N , t = 1, . . . , T ,

where Xit is 1×K , µi is an iid N(0, σ2
µ) random dummy variable, and εit is id N(0, σ2

ε ).

The random effect model has the same interpretation as the fixed effect model, i.e., the

random variable µi picks up factors specific for observation i, just as the parameters

αi do in the fixed-effect model.

Statistically, (*) is just a suggestive notation for the linear model

(∗∗) yit = Xitβ + wit ,

where

Ewitwjs =


σ2
ε + σ2

µ if i = j , t = s
σ2
µ if i = j , t 6= s

0 otherwise .

Of course, we know how to estimate model (**)—this is (again) just GLS. The random

effect model has K+2 parameters; (K β’s, σ2
ε and σ2

γ ), while the fixed effect model has

K +N + 1 parameters (β, αi, σ
2
ε ),

which makes the random effect model attractive if the T dimension is short (like 2 or 3).

The random effects model is much more parsimonious than the fixed effects model,

but it is only consistent if EwitXit = 0. (The standard criterion for exogeneity of the

regressors.) When wit = µi + εit, the assumption can also be stated:

Exitµi = 0 and Exitεit = 0.
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Example

wit = α + βhit + µi + εit.

wit are hourly wages and hit are hours per week for person i in period t. (Do workers who

work more hours receive a higher hourly pay?) In such a regression, it will typically be

hard to defend exogeneity. But now assume that person i (Mr. Smith) for other reasons

have a relatively high hourly wage (µSmith > 0). It is then likely that the high wage

induces Mr. Smith to work longer (or shorter) hours. So again the crucial assumption

Eµixit = 0 is unlikely to hold.

In general, it is often a very strong assumption (meaning that is likely not true) to impose

Eµixit = 0.

It is usually assumed that µi and εit are normally distributed. This could also be

wrong – e.g., if µi ‘picks up’ things like wealth, it would be more likely to be log-normal.

(If the distribution is known, one may figure out how to solve the problem, but usually

one has little to go by, when selecting a model for µi.)

The GLS model (**), when the data are “stacked” in the order

y = ( y11, . . . , y1T , y21, . . . , y2T , . . . yN1, . . . , yNT )′ ,

has variance matrix Ω (of dimension NT ×NT ) defined as

Ω =



σ2
ε + σ2

µ · · · σ2
µ · · · 0 · · · 0

...
. . .

...
...

...
. . .

...
σ2
µ · · · σ2

ε + σ2
µ · · · 0 · · · 0

...
...

. . .
...

...
0 · · · 0 · · · σ2

ε + σ2
µ · · · σ2

µ
...

. . .
...

...
...

. . .
...

0 · · · 0 · · · σ2
µ · · · σ2

ε + σ2
µ


.

Note that Ω is block diagonal.
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Define HT as a T × T matrix of ones, i.e.,

HT =


1 . . . 1
...

. . .
...

1 . . . 1

 .

Then Ω = σ2
µ(IN ⊗HT ) + σ2

ε (IN ⊗ IT ).

The Ω-matrix is NT ×NT and typically too large to keep in memory, so in order

to do GLS estimation, we need to find a formula for Ω−1 involving matrices of lower

dimensions.

This can be done cleverly in the following fashion: (the notation here follows Balt-

agi’s book.)

Define the T × T matrix

JT =


1
T

. . . 1
T

...
. . .

...
1
T

. . . 1
T


and

ET = IT − JT =


(1− 1

T
) . . . − 1

T
...

...
− 1
T

. . . (1− 1
T

)


Now both JT and ET are idempotent, e.g.,

[JTJT ]ij = [
∑T
t=1

1
T 2 ]ij = [T 1

T 2 ]ij

= [ 1
T

]ij = [JT ]ij .

Also,

ETJT = (IT − JT )JT = 0

so ET and JT are orthogonal.

Define P = IN ⊗ JT and Q = IN ⊗ ET then P,Q are also idempotent and or-

thogonal.
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Now
Ω = σ2

µ(IN ⊗HT ) + σ2
ε (IN ⊗ IT )

= Tσ2
µ(IN ⊗ JT ) + σ2

ε (IN ⊗ ET ) + σ2
ε (IN ⊗ JT )

= (Tσ2
µ + σ2

ε )(IN ⊗ JT ) + σ2
ε (IN ⊗ ET )

= (Tσ2
µ + σ2

ε )P + σ2
εQ

It is now trivial to check that

Ω−1 =
1

Tσ2
µ + σ2

ε

P +
1

σ2
ε

Q ,

by verifying that the Ω multiplied by the right hand side gives an identity matrix. (This

exercise is really very similar to doing a diagonalization of Ω. Try and see this. Hint:

The columns of P and Q are the eigenvectors of Ω.)

Given the formula for Ω−1 one can either estimate the model by ML.

A potential “trap” in dynamic panels

To finish the introduction to panel data, we want to mention a special “problem” in

dynamic panel data. Consider the model

(∗) yit = αi + γyit−1 + uit i = 1, . . . , N t = 1, . . . , T

uit iid(0, σ2
n) |γ| < 1

Comments: If N fixed, T → ∞ it is essential that |γ| < 1, in order to use

“standard” (non-unit-root type asymptotics). When T is fixed, N → ∞, it actually

doesn’t matter if |γ| is less than 1 (or even explosive). In “square” panels, typical for

macro, asymptotic theory of the sort (N fixed, T → ∞) or (T fixed, N → ∞) may

both provide bad approximations to the actual small sample distribution. Square panels

are, therefore, sometimes modelled as (N →∞ T
N
→ K), where K is a constant. In
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general, one always (even if |γ| = 1 or |γ| > 1) gets asymptotic normality if N →∞

(whether T →∞ or not) since one averages over N independent units. The problem

is to find the exact parameters of the asymptotic distribution, and that is at the research

frontier for panels with non-stationary data.

Now define (as usual)

yi. =
1

T

T∑
t=1

yit

and define

yi.−1 =
1

T

T∑
t=1

yit−1.

Then

γ̂ =

∑N
i=1

∑T
t=1(yit − yi.)(yit−1 − yi.−1)∑N
i=1

∑T
t=1(yit−1 − yi.−1)2

or

γ̂ − γ =

∑N
i=1

∑T
t=1(yit−1 − yi.−1)uit∑∑
(yit−1 − yi.−1)2

.

Consider E(γ̂−γ). By assumption Eyit−1uit = 0, but what about Eyi.−1uit? If

T is large yi.−1 ≈ Eyit by the law of large numbers, and Eyi.−1uit ≈ E(Eyit)uit = 0;

but if T is small yi−1 is not independent of the error term. You can show (do recursive

substitution [write y’s in terms of u’s]) and simplify (here assume αi = 0 and yio = 0

for simplicity).

yi.−1 =
1

T

[
1− γT−1

1− γ
ui1 +

1− γT−2

1− γ
ui2 + . . .+ uiT−1

]
(∗)

and now

plim
1

NT

N∑
i=1

T∑
t=1

(yi,t−1 − yi.−1)uit

= −plimN→∞
1
N

∑∞
N=1 yi.−1ui.

= −σ2
µ

T 2
(T−1)−Tγ−γT

(1−γ)2 .
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You get this expression since the correlation of ui. with yi.−1, using (*), is

1

T 2
σ2
µ

1

1− γ
[(1− γT−1) + (1− γT−2) + . . .+ (1− γ)]

= 1
T 2 σ

2
µ

1
1−γ [T − (1 + γ + . . .+ γT−1)]

= 1
T 2 σ

2
µ

1
1−γ [T − 1−γT

1−γ ]

=
σ2
µ

T 2
1

(1−γ)2 [T (1− γ)− (1− γT )]

=
σ2
µ

T 2
(T−1)−Tγ+γT

(1−γ)2

Similarly, one can show that

plim
1

NT

∑∑
(yit−1 − yi.−1)2

=
σ2
µ

1− γ2
{1− 1

T
− 2γ

(1− γ)2
· (T − 1)− Tγ + γT

T 2
}

So, in total

plimN→∞(γ̂ − γ) = −(1 + γ)

T − 1
(1− 1

T

1− γT

1− γ
)× {1− 2γ

(1− γ)(T − 1)

[
1− 1− γT

T (1− γ)

]
}−1.

I haven’t done the derivation of the last two equations (they are taken from Hsiao’s

book), you may want to do the exercise of deriving one of them on your own.

If T = 2 (for example), this is a huge bias = −1 + (1− 1
2
) = −.5 (when γ = 0).

Notice, that the bias does not go away if γ = 0 (the bias remains as long as one attempts

to estimate the γ parameters). Typical suggested solution:

Difference to get the model

∆yit = γ∆yit−1 −∆uit

(which no longer contains fixed effects) AND

(a) estimate γ by IV estimation, using yit−2 as instrument. OR

(b) estimate γ by IV estimation, using yi0 as instrument for period 2, yi0, yi1 for

period 3, yi0, yi1, yi2 for period 4, etc.
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If the original equation has iid errors, the differenced equation has a unit root in the

AR-process of the error-term, which necessitates the use of the twice lagged variables

as instruments. One drawback of (a) is that the lagged variable may or may not be a

good instrument—if γ is small, it is a lousy instrument. Using all lagged variables as

in (b) is asymptotically efficient—I don’t have practical experience with this estimator

(although, if T is large you are using a large amount of instruments and I would tend to

wonder about the quality of the estimated standard errors). If you use this type of panel

regressions in serious work you should study the issue more, starting with Arellano’s

book.

Panel Unit Roots and Panel Co-Integration (just a few comments on the

issues)

These are areas with a lot of current active research. There is a survey article by Baner-

jee in the Oxford Bulletin of Economics and Statistics (1999) and you may also want to

look at Chapter 7 of the Textbook “Applied Time Series Modelling and Forecasting” by

Harris and Sollis (Wiley 2003). Peter Pedroni has a lot of articles on these issues and a

book in process, check his WEB-page.

Note that if T is small you can use standard panel data methods (I didn’t go over

it, but see, e.g., “Estimating Vector Autoregressions with Panel Data” by Holtz-Eakin,

Newey, and Rosen in Econometrica (1988). If N is large and T is small you will want to

use Johansen’s co-integration methods).

Levin and Lin (Working Paper UCSD 1992) consider the model:

∆yit = αi + ρyit−1 + ΣK
k=1θik∆yit−k + uit .
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The error terms are supposed to be iid. Levin and Lin show that if T →∞ and N →∞

such that
√
N/T → 0 then

T
√
Nρ̂+ 3

√
N → N(0, 10.2)

if ρ = 0 and αi = 0.

Note the correction term 3
√
N , which correct for downward bias in ρ̂. Also note that

the distribution converges at a rate T in the time dimension (as for the Dickey-Fuller

unit root test) but only at rate
√
N across the N iid observations. Intuitively you can

think of first T going to infinity for each i which basically gives a Dickey-Fuller unit

root distribution and then you take the average across i of those distributions which,

since they are iid, always will lead to a normal distribution. However, econometricians

deriving distributions has to worry about the rates at which N and T converge.

For an applied economist, the conditions on N and T raise a red flag. In applications

you have only a given N and a given T so when will the asymptotic distribution be a

reasonable approximation? Other problems: Is is reasonable to have ρ be the same for

all states away from the null-hypothesis but still assume the θi parameters are different?

And, often the hardest to deal with: what if the shocks to different (states, individuals,

...) are correlated?

A good test for a unit roots that allow for different ρi and test if ρi = 0 for all i is

that of Im, Pesaran, and Shin (IPS) (J. of Econometrics 2003). Their test is simply

an average of the Dickey-Fuller t-tests for individual i’s. Their asymptotic distribution

is based on first T → ∞ and then N → ∞; which doesn’t have much meaning for an

econometrician with a given sample, but Monte Carlo studies show that the test works

reasonably well in finite sample. (I have used this test myself.) You need to look up

critical value in their paper. (Or you can find a program where it is build in, I myself
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used a GAUSS program made available by Kao [I had to correct a major error, that is

another lesson, don’t use free—or even paid—programs without verifying they behave

properly]). The IPS test also assume the i’s are independent.

A variation that uses P-values for the Dickey-Fuller test is suggested by Maddala

and Wu (Oxford Bulletin 1999, this is in the same special issue as the Banerjee survey

article). I don’t have experience with this test, but it may be promising.

There will be many papers written that figure out asymptotic distributions under various

conditions and you will have to use some judgement (and not just push some button in

some computer program). For example, is it reasonable to test if all i are stationary

at the same time? (Most tests allow for the “nuisance” parameters to be different for

different i’s.) My view is that the tests are tests for whether “most” i’s are stationary,

rather than tests for if all i are stationary, because it is pretty much impossible to have

power against the situation where, e.g., 1 out of 50 states is non-stationary. Of course,

if you really believe that each i has a different distribution, then you should test each

series one-by-one and forget about the panel. Personally, if I were to seriously use unit

root tests in panels, I would use some test such as the ones mentioned but run my own

Monte Carlo study in order to examine how they behave in data like the ones I would be

analyzing. In general, the fact that there are many different types of panels in terms of

unit roots, co-integration, fixed-effects, correlation patterns, etc. makes it hard to rely

on one or two simply set of guidelines for how to deal with panel data.
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