RICARDIAN EQUIVALENCE

HÜSEYIN SAFÂ ÜNAL

Borrowing limits and Ricardian equivalence

1 Does the timing of taxes matter ?

- How the timing of taxes interacts with restrictions on the ability of households to borrow?
- Two settings:
- (1) an infinite horizon economy with an infinitely lived representative agent
(2) an infinite horizon economy with a sequence of one-period-lived agents, each of whom cares about its immediate descendant.

Infinitely Lived Agent Economy

$\Rightarrow \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)(10.2 .1) \beta \in(0,1), u($.$) is str. incr., str. conc., twice diff.$
\Rightarrow Inada Condition: $\lim _{c \rightarrow 0} u^{\prime}(c)=+\infty$

- \exists single risk-free asset \& $\mathrm{R}>1$
$>$ Budget Constraint: $c_{t}+R^{-1} b_{t+1} \leq y_{t}+b_{t}$ (10.2.2)
- b_{0} is given, $R \beta=1$
- $\left\{y_{t}\right\}_{t=0}^{\infty}$ is nonstochastic, nonnegative endowment sequence where $\sum_{t=0}^{\infty} \beta^{t} y_{t}<\infty$
\Rightarrow Two restrictions on asset holdings $\left\{b_{t}\right\}_{t=0}^{\infty}$:
$\Rightarrow b_{t} \geq 0, \quad \forall t \geq 0$
- $b_{t} \geq \widetilde{b_{t}}$
$\Rightarrow \widetilde{b_{t}}=-\sum_{j=0}^{\infty} R^{-j} y_{t+j}$
$\Rightarrow \lim _{T \rightarrow \infty} R^{-T} b_{t+T}=0$

Optimal consumption/savings decision when $b_{t+1} \geq 0$
\Rightarrow Choose $\left\{c_{t}, b_{t+1}\right\}_{t=0}^{\infty}$ to maximize $\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)$, given b_{0}
$>$ subject to $c_{t}+R^{-1} b_{t+1} \leq y_{t}+b_{t}(10.2 .2)$
FOC:
$>u^{\prime}\left(c_{t}\right) \geq \beta R u^{\prime}\left(c_{t+1}\right), \forall t \geq 0$
$>u^{\prime}\left(c_{t}\right)>\beta R u^{\prime}\left(c_{t+1}\right) \rightarrow b_{t+1}=0$

- The optimal consumption plan depends on the $\left\{y_{t}\right\}$ path

Example 1: The consumer is never borrowing constrained.
$>b_{0}=0,\left\{y_{t}\right\}_{t=0}^{\infty}=\left\{y_{h}, y_{l}, y_{h}, y_{l}, \ldots\right\}, y_{h}>y_{l}>0$

- PV of the household's endowment:

$$
\sum_{t=0}^{\infty} \beta^{t} y_{t}=\sum_{t=0}^{\infty} \beta^{2 t}\left(y_{h}+\beta y_{l}\right)=\frac{y_{h}+\beta y_{l}}{1-\beta^{2}}
$$

\Rightarrow PV of the annuity value of \bar{c} :

$$
\frac{\bar{c}}{1-\beta}=\frac{y_{h}+\beta y_{l}}{1-\beta^{2}}
$$

\Rightarrow Solution: $c_{t}=\bar{c}, \forall t \geq 0$

$$
b_{t+1}=\frac{\left(y_{h}-y_{l}\right)}{1+\beta}
$$

Example 2: The consumer is borrowing constrained the first period.
$>b_{0}=0,\left\{y_{t}\right\}_{t=0}^{\infty}=\left\{y_{l}, y_{h}, y_{l}, y_{h}, \ldots\right\}, y_{h}>y_{l}>0$

- The optimal plan: $c_{0}=y_{l}, b_{1}=0$
from period 1 onward, the solution is the same as in example 1.

Example 3: The consumer is always borrowing constrained.
$\Rightarrow b_{0}=0, y_{t}=\lambda^{t}, 1<\lambda<R, \lambda \beta<1$

- Solution where $b_{t} \geq 0: c_{t}=\lambda^{t}, b_{t}=0, \forall t \geq 0$

Optimal consumption/savings decision when $b_{t+1} \geq \widetilde{b_{t+1}}$

Example 4:
> $b_{0}=0, y_{t}=\lambda^{t}$

- PV of the household's endowment:

$$
\sum_{t=0}^{\infty} \beta^{t} \lambda^{t}=\frac{1}{1-\lambda \beta}
$$

- Constant consumption level \hat{c} :

$$
\frac{\hat{c}}{1-\beta}=\frac{1}{1-\lambda \beta}
$$

Solution: $b_{t}=\frac{1-\lambda^{t}}{1-\beta \lambda}, b_{t}>\widetilde{b_{t}}=-\lambda^{t} /(1-\beta \lambda)$

Optimal consumption/savings decision when $b_{t+1} \geq \widetilde{b_{t+1}}$

Example 5:

- $b_{0}=0, y_{t}=\lambda^{t}, \lambda<1, \lambda \beta<1$
- Solution: $c_{t}=\hat{c}$ even if the $b_{t} \geq 0$ is imposed
$\Rightarrow \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)(10.2 .1), \beta \in(0,1), u($.$) is str. incr., str. conc., twice diff.$
- $\left\{g_{t}\right\}_{t=0}^{\infty}$: does not appear in the utility function, $\left\{\tau_{t}\right\}_{t=0}^{\infty}$: lump-sum taxes
- Government's Budget Constraints:

$$
B_{t}+g_{t}=\tau_{t}+R^{-1} B_{t+1}
$$

- By solving the budget constraint forward we reach to an intertemporal constraint:

$$
B_{t}=\sum_{j=0}^{\infty} R^{-j}\left(\tau_{t+j}-g_{t+j}\right)(10.3 .2)
$$

- For $t \geq 0, \lim _{T \rightarrow \infty} R^{-T} B_{t+T}=0$

Government:
 Effect on household

Consumer's Tax Adjusted Budget Constraint: $c_{t}+R^{-1} b_{t+1} \leq y_{t}-\tau_{t}+b_{t}$ (10.3.3)

- Solve forward:

$$
b_{t}=\sum_{j=0}^{\infty} R^{-j}\left(c_{t+j}+\tau_{t+j}-y_{t+j}\right)
$$

\Rightarrow By setting $c_{t}=0$ we obtain natural debt limit:

$$
\widetilde{b_{t}} \geq \sum_{j=0}^{\infty} R^{-j}\left(\tau_{t+j}-y_{t+j}\right)
$$

Government:
 Effect on household

- Definition: Given initial conditions $\left(b_{0}, B_{0}\right)$, an equilibrium is a household plan $\left\{c_{t}, b_{t+1}\right\}_{t=0}^{\infty}$ and a government policy $\left\{g_{t}, \tau_{t}, B_{t+1}\right\}_{t=0}^{\infty}$ such that (a) the government policy satisfies the government budget constraint (10.3.1), and (b) given $\left\{\tau_{t}\right\}_{t=0}^{\infty}$, the household's plan is optimal.
- Proposition 1: Suppose that the natural debt limit prevails. Given initial conditions $\left(b_{0}, B_{0}\right)$, let $\left\{\bar{c}_{t}, \bar{b}_{t+1}\right\}_{t=0}^{\infty}$ and $\left\{\bar{g}_{t}, \bar{\tau}_{t}, B_{t+1}\right\}_{t=0}^{\infty}$ be an equilibrium. Consider any other tax policy $\left\{\hat{\tau}_{t}\right\}_{t=0}^{\infty}$ satisfying

$$
\sum_{t=0}^{\infty} R^{-t} \hat{\tau}_{t}=\sum_{t=0}^{\infty} R^{-t} \bar{\tau}_{t}
$$

Government:
 Effect on household

$>$ Then $\left\{\bar{c}_{t}, \hat{b}_{t+1}\right\}_{t=0}^{\infty}$ and $\left\{\bar{g}_{t}, \hat{\tau}_{t}, \hat{B}_{t+1}\right\}_{t=0}^{\infty}$ is also an equilibrium where:

$$
\begin{aligned}
& \widehat{b}_{t}=\sum_{j=0}^{\infty} R^{-j}\left(\bar{c}_{t+j}+\hat{\tau}_{t+j}-y_{t+j}\right) \\
& \hat{B}_{t}=\sum_{j=0}^{\infty} R^{-j}\left(\hat{\tau}_{t+j}-\bar{g}_{t+j}\right)(10.3 .3)
\end{aligned}
$$

Government:
 Effect on household

- Proof:
$>1^{\text {st }}$ Point of the Proposition: The same consumption plan $\left\{\bar{c}_{t}\right\}_{t=0}^{\infty}$, but adjusted borrowing plan $\left\{\hat{b}_{t+1}\right\}_{t=0}^{\infty}$, solve the household's optimum problem under the altered government tax scheme. Under the natural debt limit, household faces a single intertemporal budget constraint (10.3.4). At time 0:

$$
b_{0}=\sum_{t=0}^{\infty} R^{-t}\left(c_{t}-y_{t}\right)+\sum_{t=0}^{\infty} R^{-t} \tau_{t}
$$

- We construct the adjusted borrowing plan $\left\{\hat{b}_{t+1}\right\}_{t=0}^{\infty}$ (by solving the 10.3.3 forward to obtain 10.3.7) which satisfies the adjusted natural debt limit in every period.

Government:
 Effect on household

- $2^{\text {nd }}$ Point of the Proposition: The altered government tax and borrowing plans continue to satisfy the government's budget constraint. At time 0:

$$
B_{0}=\sum_{t=0}^{\infty} R^{-t} \tau_{t}-\sum_{t=0}^{\infty} R^{-t} g_{t}
$$

- Under the altered tax plan with an unchanged present value of taxes, the government can finance the same expenditure plan $\left\{\bar{g}_{t}\right\}_{t=0}^{\infty}$
- The adjusted borrowing plan $\left\{\hat{B}_{t+1}\right\}_{t=0}^{\infty}$ is computed in a similar way as above to arrive at (10.3.8).

Government:
 Effect on household

- Proposition 2: Consider an initial equilibrium with consumption path $\left\{\bar{c}_{t}\right\}_{t=0}^{\infty}$ in which $b_{t+1}>0$ for all $t \geq 0$. Let $\left\{\bar{\tau}_{t}\right\}_{t=0}^{\infty}$ be the tax rate in the initial equilibrium, and let $\left\{\hat{\tau}_{t}\right\}_{t=0}^{\infty}$ be any other tax-rate sequence for which

$$
\hat{b}_{t}=\sum_{j=0}^{\infty} R^{-j}\left(\bar{c}_{t+j}+\hat{\tau}_{t+j}-y_{t+j}\right) \geq 0
$$

for all $t \geq 0$. Then $\left\{\bar{c}_{t}\right\}_{t=0}^{\infty}$ is also an equilibrium allocation for the $\left\{\hat{\tau}_{t}\right\}_{t=0}^{\infty}$ tax sequence.

- Proof ?

