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1 The effect of income shocks on consumption in Hall’s

’78 model

This note basically summarizes pp.81–87 of Deaton’s (1992) book “Understanding Consump-

tion” (with an attempt to spell out some issues in more detail).

The goal here is to predict the impact of a “shock to income” on permanent income. A

“shock to income” is jargon for the difference between actual income at period t and the

expected value of period t income where the expectations are those of period t − 1. This

shock will also affect the expectations of future income on which the PIH consumer bases

their consumption decision at period t. So we need to find Etyt+k for all k (the period-t

expected income in period t + k) and compare it to our previous expectations of yt+k, that

is Et−1yt+k. The change in consumption in the PIH (and any other rational expectations
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forward looking model) will depend on the changes in these expectations.

Assume that income follows a stationary invertible ARMA time series model. First note

that if income yt follows a (maybe infinite) invertible MA-model,

yt = µ+ ut + b1ut−1 + b2ut−2 + ....

then the shock to income is ut = yt−Et−1yt. In other words, we have the intuitive observation

that

yt = Et−1yt + ut ,

i.e., what “we expected” yt would be plus the innovation. This is of course why we call ut

an innovation. We can always define the innovation like this in any (linear or non-linear)

time series. But in ARMA models, all new information about all future values is a function

of ut as we shall see.

Note that we also can write the conditional expectation as

Et−1(yt) ≡ E(yt|yt−1, yt−2, ....) = E(yt|ut−1, ut−2, ...) ,

in this case where yt only depends on its own lagged values. This is because for any stationary
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invertible ARMA process, we can move back and forth between the AR and the MA models:

a(L)xt = µ+ b(L)ut ⇔ xt =
µ

a(1)
+ a−1(L)b(L)ut ⇔ b−1(L)a(L)xt =

µ

b(1)
+ ut ,

so, when yt is stationary and invertible, the yt’s and the ut’s can be derived from each other.

Now, because all error terms (innovations, sometime the name slips, because in estima-

tions it is usually an error term) at or before t − 1 are known at t − 1 while the period t

innovation has mean 0, we have

Et−1(yt) = µ+ b1ut−1 + b2ut−2 + ...

which implies

Et(yt+1) = µ+ b1ut + b2ut−1 + ...

and similarly

Et−1(yt+1) = µ+ b2ut−1 + b3ut−2 + ...

Note. I hope you are all familiar with the Law of Iterated Expectations which states

that to take the expectation of a random variable yt+1 with respect to an information set
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(say, It−2), you can take the expectation with respect to a larger information set (say, It−1)

and then take the expectation of that expression with respect to a smaller information set

It−2. This is used a lot in macro and elsewhere. So we have, for example

Et−2yt+1 = Et−2{Et−1yt+1} ,

because the information set at t− 1 is larger (ut−1 is the extra information) than the infor-

mation set at t− 2. The unconditional expectation “conditions on nothing,” so for example

Eyt+1 = E{Et−1yt+1} .

The basic intuition when you take conditional expectation like this is simply that one can

consider us for all s before the “current” time period (e.g., t or t− 1) as known.

Continuing, we have

Et(yt+2) = µ+ b2ut + b3ut−1 + ...

and

Et−1(yt+2) = µ+ b3ut−1 + b4ut−2 + ...

The pattern is now obvious, and we see that yt − Et−1yt = ut, Etyt+1 − Et−1yt+1 = b1ut,

4



Etyt+2 − Et−1yt+2 = b2ut ...., so that all new information on future expected income is a

function of the present innovation ut.

A maybe simpler, equivalent way to arrive at this conclusion is to observe that when

yt = µ + ut + b1ut−1 + b2ut−2 + .. then ∂yt/∂ut = 1, ∂yt/∂ut−1 = b1,∂yt/∂ut−2 = b2 ...

and therefore also ∂yt/∂ut = 1, ∂yt+1/∂ut = b1,∂yt+2/∂ut = b2 .... Since, at any period t+ s

where s ≥ 0 the expectation at time t of ut+s = 0 and us where s ≤ t are known at time

t as well as at time t − 1 the change in the expected value of future income is given as the

partial derivative of those future income wrt. ut times the value of ut.

A plot of bk against k is called an impulse response function because it measures the re-

sponse of future income to the innovation or “impulse” ut.

Now return to Hall’s version of the PIH. Hall’s model implies that ct = Etct+1. Assume

that this relation holds in all future periods and that the time horizon is infinite. Then the

budget constraint is

∞∑
k=0

(1 + r)−kct+k = At +
∞∑
k=0

(1 + r)−kyt+k
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which implies

∞∑
k=0

(1 + r)−kEtct+k = At +
∞∑
k=0

(1 + r)−kEtyt+k

because the martingale condition holds in all future periods we have Etct+k = ct for all k ≥ 0

(by the “law of iterated expectations”) and the left hand side of the displayed equation

becomes
∑∞

k=0(1 + r)−kct = ct (1 + r)/r (remember—and you have to remember that one—

that 1 + a + a2 + ... = 1
1−a

) . When you plug in 1
1+r

for a, you get 1+r
r

after multiplying

numerator and denominator by 1 + r.

(1)
1 + r

r
ct = At +

∞∑
k=0

(1 + r)−kEtyt+k ,

or

(2) ct =
r

1 + r
At +

r

1 + r

∞∑
k=0

(1 + r)−kEtyt+k .

which implies (as the variables are stationary)

(3) ct−1 =
r

1 + r
At−1 +

r

1 + r

∞∑
k=0

(1 + r)−kEt−1yt−1+k .

We want to find ∆ct, so we need to line up the future income shocks; that is, write the last

summation in terms of yt+k not yt−1+k. We have

(4)
∞∑
k=0

(1 + r)−kEtyt+k = yt + (1 + r)−1Etyt+1 + (1 + r)−2Etyt+2 + ....
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We can also change t to t− 1 here:

∞∑
k=0

(1 + r)−kEt−1yt−1+k = yt−1 + (1 + r)−1Et−1yt + (1 + r)−2Et−1yt+1 + (1 + r)−3Et−1yt+2....

= yt−1 + (1 + r)−1(Et−1yt + (1 + r)−1Et−1yt+1 + (1 + r)−2Et−1yt+2....)

So that

∞∑
k=0

(1 + r)−kEt−1yt−1+k = yt−1 + (1 + r)−1
∞∑
k=0

(1 + r)−kEt−1yt+k ,

where the latter summation contains the same future y’s as for ct so it is easy to subtract

terms.

Keep in mind where we are going. We want to find ∆ct = ct − ct−1. ct contains a sum

of terms in yt+k, and ct−1 contains a sum of terms in yt−1+k...but these are the same terms

differently labelled, except for yt−1 which is not in the expression for ct. So we separate that

out.

Multiplying the expression for ct−1 with (1 + r), we get

(5) (1 + r)ct−1 = rAt−1 + ryt−1 +
r

1 + r

∞∑
k=0

(1 + r)−kEt−1yt+k ,

where the second part of the expression is very similar to the term in ct. Formula (1)
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contains lagged assets, so to line up current and lagged consumption we use the dynamic

budget constraint: At = (At−1+yt−1−ct−1)∗(1+r) that y and c takes place at the beginning

of the period an the interest will be on assets left-over after consumption. Equation (1) then

implies

(6) ct = r(At−1 + yt−1 − ct−1) +
r

1 + r

∞∑
k=0

(1 + r)−kEtyt+k .

We can rewrite (5) as

(7) ct−1 = rAt−1 + ryt−1 − rct−1 +
r

1 + r

∞∑
k=0

(1 + r)−kEt−1yt+k ,

Subtract (7) from (6) and get

∆ct =
r

1 + r

∞∑
k=0

(1 + r)−k(Et − Et−1)yt+k ,

(where, for any stochastic variable, (Et − Et−1)xt+k ≡ Etxt+k − Et−1xt+k).

Now assume that yt follows an (possibly infinite) MA model as above. Then

∆ct =
r

1 + r

∞∑
k=0

(1 + r)−kbkut .

If we use b(L) to denote the lag-polynomial b(L) = 1 + b1L + b2L
2 + ... and b(z) to denote

the corresponding z-transform, then

∆ct =
r

1 + r
ut × (1 + b1

1

1 + r
+ b2(

1

1 + r
)2 + b3(

1

1 + r
)3 + ....) =

r

1 + r
ut × b(

1

1 + r
) .
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What a beautiful compact formula for how consumption changes as function of a change

in the expected income in all future periods. But it gets better, much better: A general

ARMA process a(L)yt = b(L)ut is equal to the infinite MA model yt = a(L)−1b(L)ut, so for

a general ARMA process we obtain

∆ct =
r

1 + r
ut ×

b( 1
1+r

)

a( 1
1+r

)
.

This is much better because we work more often with AR model than with MA model. But

it you want to prove the formula without first going the MA-representation, well, good luck

with that! (Which is American vernacular for “you will never get through with that.”)

NOTE: This formula is valid as long as a( 1
1+r

) takes a finite value. It is not actually nec-

essary that the AR-part is stable when r is positive as the powers in 1
1+r

drives down the

coefficients in the infinite sum.
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1.1 Excess Smoothness

Macroeconomic data for aggregate income is well approximated by an AR(1) model in dif-

ferences:

∆yt = µ+ a∆yt−1 + ut ,

where a > 0, and typically 0 < a < .6 or so. Some researchers find a significant coefficient

to twice lagged income, but that coefficient is almost always found to be small and the

quantitative conclusions of the following will hold for that model also. We will, therefore,

illustrate the issue using the simple AR(1) model for differenced income.

The model for income can also be written as

(1− L)(1− aL)yt = ut ,

or

a(L)yt = ut for a(L) = (1− L)(1− aL) = 1− (1 + a)L+ aL2 .

Applying equation (1) to predict the change in consumption in this case gives us

∆ct = ut
r

1 + r
× 1

1− 1+a
1+r

+ a
(1+r)2

,

which simplifies to

∆ct = ut
1 + r

1 + r − a
.

10



This formula reveals that ∆ct reacts more than one-to-one with innovations to income when

a is positive. This is a surprising implication of the PIH, which historically was suggested

as an explanation of why consumption “is more smooth than income,” and it is occasionally

referred to as “Deaton’s paradox”.

Another way of looking at this is to consider the coefficient to income in a regression of

(differenced) consumption on (differenced) income. As previously mentioned the coefficient

will (for the number of observations becoming infinite) be

cov(∆ct,∆yt)

var(∆yt)
=

1 + r

1 + r − a
/

1

1− a2
=

1 + r − a2 ∗ (1 + r)

1 + r − a
,

which is larger than one for typical values of a and r. One way of testing the PIH is to

regress differenced consumption on differenced income and see if the coefficient is equal to

that predicted by the PIH or — at the least — larger than one, but that is usually not done

when using macroeconomic data because income may not be a valid regressor. (Technically,

an innovation to consumption due to, say, a change in consumer confidence, may change the

level of income (as in the IS/LM model) making income partly a function of consumption.

In the language of econometricians income is not necessarily exogenous for consumption.)

Due to these technical issues, some researchers (in particular, Deaton, who brought up the

issue) have simply compared the variance of consumption changes to the variance of inno-
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vations to income. Contrary to the implications of the PIH, the latter has been found to be

clearly larger than the former, and this results has become known as the “excess smoothness

of consumption.”

More recent models and final comments on consumption Most recent computa-

tional papers use some variation of the “buffer-stock model,” popularized by Christopher

Carroll (Quarterly Journal of Economics 1987). The model assumes CRRA utility

U(C) =
C1−ρ

1− ρ
,

which reduces to log-utility for ρ = 1. This utility function does not have linear marginal

utility so risk matters, not just expected future income, as we will talk more about later.

Carroll assumed that people are impatient, i.e., the discount rate being larger than the in-

terest rate, so that people prefer to consume now and have declining consumption, but also

that agents cannot borrow. Finally, Carroll assumes that there is a tiny risk of zero income.

In this case, the agents will always hold some savings (as utility of zero consumption is minus

infinity), so the Euler equation will hold, and Carroll showed that the level of savings will

fluctuate around a constant level that depends on risk, risk aversion, and impatience. The

model needs to be simulated. The buffer-stock explains excess sensitivity, but it implica-
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tion for aggregate consumption is not too different from that of the PIH; Luengo-Prado and

Sorensen (2008). (That paper also considers time aggregation, housing, and more.)

A further comment related to the rule-of-thumb consumer model. Heterogeneity of con-

sumers is an important research area, recent papers have focused on heterogeneity of discount

rates, but there surely is also lots of heterogeneity in income processes, beyond different de-

terministic trends for college- non-college-graduates (as is commonly modeled).

The idea of information shocks is a hot area in macro. Nick Bloom (Econometrica 2009)

suggested shocks to uncertainty (variance) of future variables such a productivity and this

paper already has about 6,000 references, so it created an explosion of research. Bloom in

particular focused on firm behavior, but the many many papers that followed (and still is

being written) takes the idea to other agent, such as agents consuming less when uncertainty

is high. For this, ARMA models are not sufficient and people have used extensions such

a model for which income switches between two ARMA processes which can have different

means and variances.
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