Midterm 1- February 14, 2018

Each sub-question in the following carries equal weight.

1. (30\%) Consider the model

$$
Y=X \beta+\epsilon,
$$

where X is an $N \times K$ matrix and Y and ϵ are N-vectors. Assume the standard assumptions for OLS holds.
a) What are the standard assumptions?
b) Find (derive) the OLS estimator $\hat{\beta}$.
c) Show that $X \hat{\beta}$ takes the form $P Y$ where P is an $N \times N$ symmetric idempotent matrix. (You have to show that it is symmetric and idempotent).
d) Show that $M=(I-P)$ satisfies $e=M Y$, where e is the vector of residuals and verify that e is orthogonal to X.
e) Verify that the mean $\bar{e}=0$ if one column in X is a vector ι of ones.
2. (20\%) For the OLS estimator, prove the Frisch-Waugh theorem. (If you find it simpler, you are allowed to assume that there are only two regressors and solve the normal equations.)
3. (15%) Explain what is the Chow test and show how the test can be written using a formula that involved the sums of squares from three separate regressions.
4. (15%) Assume that you are interested in estimating the model (where you can treat the variables as having mean 0)

$$
Y_{i}=\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\epsilon_{i}
$$

by OLS. Assume that you have 80 observations and that you know the moments

$$
X_{1}^{\prime} X_{1}=3, \quad X_{2}^{\prime} X_{2}=2, \quad X_{1}^{\prime} X_{2}=0, \quad X_{1}^{\prime} Y=5, \quad X_{2}^{\prime} Y=4, \quad Y^{\prime} Y=20
$$

a) Find the estimated coefficients b_{1} and b_{2}.
b) Find the estimated variance $\hat{\sigma}^{2}$.
c) Perform a 5% two-sided t -test for the hypothesis $\beta_{1}=1$. (If you could not find s^{2} in b) use a value of 2.0).
5. Computer question (20\%). Read the Matlab code below and answer the questions in the code.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Econometrics 1
% Spring 2018
% Midterm 1
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

clear;
clc;
\%
\%
\% This code estimates the model
\%
$\% \quad y=$ beta0 + beta1*X1 + beta2*X2 + e
\%
\% using OLS and calculates other things.
\%
\%
\% Generate the data.
$\mathrm{n}=500 ; \quad \%$ Sample size
$\mathrm{X} 1=\operatorname{randn}(\mathrm{n}, 1) ; \quad \% \mathrm{X} 1$
$\mathrm{X} 2=\operatorname{randn}(\mathrm{n}, 1) ; \quad \% \mathrm{X} 2$
$\mathrm{X}=$ [ones $(\mathrm{n}, 1) \mathrm{X} 1 \mathrm{X} 2] ; \quad \% \mathrm{X}$ matrix with constant
beta $=[1 ; 3 ; 2] ; \quad$ \% True coefficients
$\mathrm{u}=\operatorname{randn}(\mathrm{n}, 1)$; \quad \% Standard normal disturbances
$\mathrm{y}=\mathrm{X} *$ beta +u ; \quad \% Observed values of y
\%

```
% Estimate the coefficents using OLS.
b = inv(X'*X)*X'*y; % OLS estimates
% Compute the standard errors.
k = size(beta, 1); % Number of coefficients
yhat = X*b; % Predicted values of Y
uhat = y - yhat; % Residuals
s2 = XXXX1; % S Squared
vc = XXXX2; % Variance-Covariance Matrix
se = XXXX3 % Standard Errors
% Compute the t-statistics.
t = XXXX4; % t-statistics
disp(' ')
disp('Model: y = beta0 + beta1*X1 + beta2*X2 + e')
disp(' ')
disp('Regression Results')
disp(' ')
disp(' Estimates SE |t-stat|')
disp([b se t])
disp('Note: OLS estimates are b0, b1 and b2 in that order.')
disp(' ')
```

\%
\%
\%
\% Question 1: Complete the code above by replacing XXXX1-XXXX4 with the relevant Matlab code
\%
\%
\%

