ECONOMETRICS II, Fall, 2022

Bent E. Sørensen

Econometrics II. Midterm Exam 2-October 24, 2022

Each sub-question in the following carries equal weight.

1. (20%) Consider the bivariate model

$$
y_{i}=\alpha+\beta x_{i}+u_{i},
$$

and

$$
z_{i}=\omega+\gamma w_{i}+v_{i}
$$

where x_{i} and w_{i} are exogenous regressors, the error terms u_{i} and v_{i} are mean zero and normally distributed and uncorrelated with regressors in their respective equation and satisfies the standard conditions (no autocorrelation/heteroskedasticity). We normalize the variance of v to unity and assume that u and v are uncorrelated, but the correlation of x with v is ρ (different from 0). We observe y only if $Z=1$, where $Z=1$ if $z>0$ and $Z=0$, otherwise. We observe Z, whether it is zero or one.
a) Is the OLS regression for y biased or unbiased? Explain why. (You can use words only, but the logic has to be clear.)
b) If x follows a standard normal distribution, suggest a correction factor that makes the y-regression unbiased. You do not need to derive the formula, but you have to be clear why your suggestion would work. (Note: this is not exactly the model we covered in detail in class, so you need to think a little.)
2. (20%) Consider the exponential duration model with constant hazard.
a) Write down the \log likelihood function for a sample of N completed spells. Define all terms carefully.
b) Write down the log likelihood function for a sample with N_{1} completed spells and N_{2} incomplete spells.
3. a) Explain how a parametric bootstrap estimator works.
b) Explain how the non-parametric bootstrap estimator works.
c) Explain how the non-parametric block bootstrap estimator works. (You can assume the panel setting that we mainly focused on in class).
4. (20\%) Consider the Matlab program below and explain what is being estimated where there is
a query in the code (2 places). (We need the formulas for the relations being estimated and what is the estimator.)

```
clear
clc
p = 1;
k = 1;
```

\% pth difference.
\% kth lag.
\%
\%
\% Data preparation.
\%
\%
\% Load data.
load data
pops $=[\operatorname{pops6396}(1: 8,:) ; \operatorname{pops6396(10:51,:)];} \%$ Population.
pops = pops(:,1:33);
cpi_vec = cpi6396(1:33); \% CPI.
cpi = kron(ones(size(pops,1),1), cpi_vec');
dpinc $=$ [dpi6396(1:8,:); dpi6396(10:51,:)]; \% Income.
dpinc $=\operatorname{dpinc}(:, 1: 33)$;
dpi_agg = sum(dpinc)'; $\%$ Aggregate.
dpinc = dpinc./cpi;
dpi_agg = dpi_agg./cpi_vec;
ndur6395 = ndur6095(:,4:36); \% Non-durables.
ndur $=[$ ndur6395(1:8,:); ndur6395(10:51,:)];
sale = ndur./cpi;
perc = sum(ndur)';

```
perc = perc./cpi_vec;
clear ndur cpi cpi_vec pops6396 cpi6396 dpi6396 ndur6095 ndur6395
% Make everything per capita.
dpi = dpinc./pops;
sale = sale./pops;
perc = perc./sum(pops)';
dpi_agg = dpi_agg./sum(pops)';
dpi_agg = kron(ones(size(pops,1),1),dpi_agg');
perc = kron(ones(size(pops,1),1),perc');
clear pops
% Take logs.
logdpi = log(dpi);
logsale = log(sale);
logperc = log(perc);
logdpi_agg = log(dpi_agg);
clear dpi sale perc dpi_agg
% Take differences.
D = size(logdpi,2);
d_dpi = idiff(logdpi,p,D);
d_sale = idiff(logsale,p,D);
d_perc = idiff(logperc,p,D);
d_dpi_agg = idiff(logdpi_agg,p,D);
clear D p logdpi logsale logperc logdpi_agg
dpi_t = d_dpi';
dpi_1ag = lagmatrix(d_dpi',1); % Lag matrix.
n1 = size(dpi_t,1);
n2 = size(dpi_1ag,1);
```

```
dpi_t = dpi_t(k+1:n1,:)';
dpi_1ag = dpi_1ag(k+1:n2,:)';
clear n1 n2 d_dpi
sale_t = d_sale' ;
n3 = size(sale_t,1);
sale_t = sale_t(k+1:n3,:)';
clear n3 d_sale
dpi_aggt = d_dpi_agg';
dpi_agg1ag = lagmatrix(d_dpi_agg',1);
n4 = size(dpi_aggt,1);
n5 = size(dpi_agg1ag,1);
dpi_aggt = dpi_aggt(k+1:n4,:)';
dpi_agg1ag = dpi_agg1ag(k+1:n5,:)';
clear n4 n5 d_dpi_agg
perc_t = d_perc';
n6 = size(perc_t,1);
perc_t = perc_t(k+1:n6,:)';
clear n6 d_perc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Fixed effects.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Time fixed effects.
```

```
[dpi_t_ft,dpi_1_ft] = fe(dpi_t,dpi_1ag,1,0);
[dpi_atft,dpi_a1ft] = fe(dpi_t-dpi_aggt,dpi_1ag-dpi_agg1ag,1,0);
[saleatft,~] = fe(sale_t-perc_t,perc_t,1,0);
[sale_tft,perc_tft] = fe(sale_t,perc_t,1,0);
% Cross section fixed effects.
[dpi_t_fx,dpi_1_fx] = fe(dpi_t,dpi_1ag,0,1);
[dpi_atfx,dpi_a1fx] = fe(dpi_t-dpi_aggt,dpi_1ag-dpi_agg1ag,0,1);
[sale_tfx, ~] = fe(sale_t,perc_t,0,1);
[saleatfx,perc_tfx] = fe(sale_t-perc_t,perc_t,0,1);
% Cross section and time fixed effects.
```



```
    % Cross fixed effe
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
%
% Estimation and Results.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N = size(sale_t,1);
T = size(sale_t,2);
O = ones(N,T);
[gls2,glsstdev2] = xtreg(sale_tft,dpi_t_ft);
A: What is being e
[gls6, glsstdev6] = xtreg(saleatfx,dpi_atfx);
B What is being es
5. \((20 \%)\) Consider the Matlab program below and explain what is being estimated where there is a query in the code ( 2 places). (We need the formulas for the relations being estimated and what is the estimator.) (2 places)
```

```
clear
clc
% Set the true parameters and placeholders for results.
T = 150; % Number of observa
beta0 = 0; % Intercept in equ
beta1 = 1.5; % Coefficient on Y
beta2 = 0.3; % Coefficient on X
beta3 = 0.0; % Intercept in equ
beta4 = 0.3; % Coefficient on x
beta5 = 2;
beta6 = 0.015;
beta7 = 0.0;
beta8 = 0.0;
beta9 = 0.0;
beta10 = 0.0;
sigma1 = 1; % Standard deviati
sigma2 = 1;
sim = 200;
    % Standard deviati
    % Number of simulat:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The simultaneous equations model is
% Y1 = beta0 + beta1*Y2 + beta2*x1 + u1
% Y2 = beta3 + beta4*x1 + beta5*x2 + beta6*x3 + beta7*x4 + beta8*x5 + beta9*x6 + bet
%
% This code estimates the coefficients in the first equation.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Generate the data.
x1 = 2 + normrnd(0,1,T,1); % x1.
```

```
x2 = 3 + sigma1.*normrnd(0,1,T,1); % x2.
x3 = -2 + 0.4*x2 + sigma1.*normrnd(0,1,T,1);
x4 = normrnd(0,1,T,1);
x5 = 0.9*sigma2.*normrnd(0,1,T,1);
x6 = 1 + sigma1.*normrnd(0,1,T,1);
x7 = 0.3*sigma1.*normrnd(0,1,T,1);
x8 = 0.9*sigma2.*normrnd(0,1,T,1);
x9 = 1 + sigma1.*normrnd(0,1,T,1);
x10 = 0.3*sigma1.*normrnd(0,1,T,1);
x11 = 0.9*sigma2.*normrnd (0,1,T,1);
x12 = 1 + sigma1.*normrnd(0,1,T,1);
x13 = 0.3*sigma1.*normrnd(0,1,T,1);
X = [ones(T,1) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13];
for s = 1:sim
```

```
u1 = normrnd(0,sigma1,T,1); % Residuls for equ
```

u1 = normrnd(0,sigma1,T,1); % Residuls for equ
u2 = normrnd(0,sigma2,T,1) + 5*u1;
u2 = normrnd(0,sigma2,T,1) + 5*u1;
% Residuals for eq
% Residuals for eq
%Generate y2
%Generate y2
y2 = beta3 + beta4*x1 + beta5*x2 + beta6*x3 + beta7*x4 + beta8*x5 + beta9*x6 + beta10*x7 +
y2 = beta3 + beta4*x1 + beta5*x2 + beta6*x3 + beta7*x4 + beta8*x5 + beta9*x6 + beta10*x7 +
y1 = beta0 + beta1*y2 + beta2*x1 + u1;
y1 = beta0 + beta1*y2 + beta2*x1 + u1;
Y = [y1 y2];
Y = [y1 y2];
Y1 = Y(:,1); %same as y1
Y1 = Y(:,1); %same as y1
Y2 = Y(:,2); %endogenous regressors, same as generated y2

```
Y2 = Y(:,2); %endogenous regressors, same as generated y2
```

X_exo1 = $\mathrm{X}(:, 1: 2)$; \%exogenous regressors in the reduced form
X_OLS=[ones (T,1) Y2 x1];
\% xxxx
B2_hat $=\operatorname{inv}\left(\mathrm{X}^{\prime} * \mathrm{X}\right) * \mathrm{X}^{\prime} * \mathrm{Y} 2 ; \quad \%$ First stage esti
Y2_hat $=\mathrm{X} *$ B2_hat; $\quad \%$ Fitted values of

```
    % xxxx
    X1_hat = [ones(T,1) Y2_hat x1];
    B_zzzz(s,:) = inv(X1_hat'*X1_hat)*X1_hat'*Y1; A: What estimator/model is this?
    %xxxxx
    N = length(Y2);
Mexo = eye(N) - X*inv(X'*X)*X';
Mexo1 = eye(N) - X_exo1*inv(X_exo1'*X_exo1)*X_exo1';
W = [Y1 Y2]'*(Mexo)*[Y1 Y2]; % % [ < matrix
W1 = [Y1 Y2]'*(Mexo1)*[Y1 Y2]; %2x2 matrix
lambda = min( eig(inv(W)*W1 )) ;
    %finds the min kappa from the book
B_xxx(s,:) = inv(X_OLS'*(eye(N)-(lambda*Mexo))*X_OLS)
    *(X_OLS'*(eye(N)-(lambda*Mexo))*Y1); B: What estimator/model is this?
end
```

