Midterm 2009.

1. Assume that GNP, money demand (M2) and the interest rate (IR) are related as in the following VAR(2) model

GNP_t		$\begin{bmatrix} 2 \end{bmatrix}$.7	.1	0	GNP_{t-1}		1	0	0	$\begin{bmatrix} u_{1t} \end{bmatrix}$]
$M2_t$	=	1	+	0	.4	.1	$M2_{t-1}$	+	1	1	0	u_{2t}	
IR_t		0		.9	0	.8	IR_{t-1}		.5	0	1	u_{3t}	

Plot (or write down) the values for t-1,2,3 for the impulse response functions for GDP, M2, IR following a unity shock $u_{1t} = 1$.

2. Write down the estimated variance in for GMM when the optimal weighting matrix is used. And when an arbitrary W matrix is used.

3. Explain why we can estimate the slope in a panel data model model by subtracting individual-specific means. (Use Frisch-Waugh [explain what that is] and orthogonality of regressors.)

4. In the Markov chain, using the notation of the book, prove that

$$\pi_{t+1}' = \pi_t' P \; .$$

Make sure to explain in detail what these symbols mean.

5. Write down the Bellman equation. Explain the definition of all terms.