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Preferences and Endowments

One consumption good which cannot be produced or
stored
The total amount of the good in any given period is N
There are 2N households divided into two equal types: odd
and even

{yt
o}∞t=0 = {1, 0, 1, 0, . . .}

{yt
e}∞t=0 = {0, 1, 0, 1, . . .}

Both types maximize

U =

∞∑
t=0

βtu(cht )

Where β ∈ (0, 1) and u(·) is twice continuously
differentiable, increasing, and strictly concave
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A Pareto Optimal Solution

A social planner has a weighted preference θ ∈ [0, 1] for
odd agents
The social planner chooses {cot , cet }

∞
t=0 to maximize:

θ

∞∑
t=0

βtu(cot ) + (1 − θ)

∞∑
t=0

βtu(cet)

Subject to:
cet + cot = 1, t > 0

FOC:
θu ′(cot ) − (1 − θ)u ′(1 − cot ) = 0
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Rearranging:
u ′(cot )

u ′(1 − cot )
=

1 − θ

θ

Which is time invariant, implying:

Pareto Optimal Solution

cot = co(θ)

cet = 1 − co(θ) = ce(θ)
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A Competitive Market Solution

Households take prices {q0
t} as given

Maximize:

U =

∞∑
t=0

βtu(ct)

Subject to: ∞∑
t=0

q0
tct 6

∞∑
t=0

q0
tyt

Household Lagrangian

L =

∞∑
t=0

βtu(ct) + µ

∞∑
t=0

q0
t(yt − ct)

FOC:
βtu ′(ct) = µq

0
t, ct > 0
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A Competitive Market Solution

Definition 1
A competitive equilibrium is a price sequence {qot }

∞
t=0 and an

allocation {cot , cet }
∞
t=0 that have the property that (a) given the

price sequence, the allocation solves the optimum problem for
households of both types, and (b) ce + co = 1 ∀ t > 0.

First we need to identify an allocation and price system for
which we can verify that the FOC’s for both even and odd
households are satisfied.
Start with the Pareto optimal allocation:

cot = co(θ)

cet = 1 − co(θ) = ce(θ)
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Plugging the Pareto allocation into the FOC for odd
households yields:

q0
t =

βtu ′(co)

µo

Or,
q0
t = q

0
0β

t

Normalizing q0
0 = 1 and plugging into budget constraint:

Odd :

∞∑
t=0

βtco =

∞∑
t=0

βtyot

Even :

∞∑
t=0

βtce =

∞∑
t=0

βtyet
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Odd :
co

1 − β
=

1
1 − β2

Even :
ce

1 − β
=

β

1 − β2
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Competitive Market Solution

co =
1

1 + β

ce =
β

1 + β

q0
t = β

t

The competitive market solution is Pareto Optimal
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Ricardian Proposition

Assume a government which levies taxes τit
The government uses the tax revenues to purchase some
constant G ∈ (0, 1)
The household’s budget constraint then becomes:

∞∑
t=0

q0
tc

i
t 6

∞∑
t=0

q0
t(y

i
t − τ

i
t)

The government’s budget constraint is:

∞∑
t=0

q0
tG =

∑
i=o,e

∞∑
t=0

q0
tτ

i
t
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Definition 2
A competitive equilibrium is a price sequence {qot }

∞
t=0, a tax

system {τot , τet }
∞
t=0 and an allocation {cot , cet ,Gt}

∞
t=0 such that

given the price system and the tax system the following
conditions hold: (a) the allocation solves each consumer’s
optimum problem, and (b) the government budget constraint is
satisfied for all t > 0, and (c) N(cot + cet) +G = N ∀ t > 0.
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Ricardian Proposition

Let τi ≡
∑∞

t=0 q
0
tτ

i
t

Then it follows that:

co =
1

1 + β
− τo(1 − β)

ce =
β

1 + β
− τe(1 − β)
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Ricardian Proposition

The equilibrium is invariant to changes in the timing of tax
collections that leave unaltered the present value of lump-sum
taxes assigned to each agent.
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Loan Market Interpretation

Define total time t tax collections as τt =
∑

i=o,e τ
i
t

Then the government’s budget constraint becomes:

(G0 − τ0) =

∞∑
t=1

q0
t

q0
0
(τt −Gt) ≡ B1

Or:

q0
0

q0
1
(G0 − τ0) + (G1 − τ1) =

∞∑
t=2

q0
t

q0
1
(τt −Gt) ≡ B2
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Using different notation:

R1B1 + (G1 − τ1) = B2

In general:

RtBt + (Gt − τt) = Bt+1, t > 0
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Preferences and endowments are the same as above
Shut down all loan markets and rule out intertemporal
trades
Replace complete markets with fiat currency
At time 0 the government endows each even agent with M

N

units of unbacked, inconvertible currency
Odd agents are given nothing in time 0
Let pt be the price level in time t
Contemporaneous exchanges of currency for goods are the
only transactions allowed
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Given the price sequence {pt}
∞
t=0 the household’s problem

is to choose {ct,mt}
∞
t=0 to maximize:

∞∑
t=0

= βtu(ct)

Subject to

mt + ptct 6 ptyt +mt−1, t > 0

The household Lagrangian is then:

L =

∞∑
t=0

βt{u(ct) + λt(ptyt +mt−1 −mt − ptct)}
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The FOC’s with respect to ct andmt are:

u ′(ct) = λtpt, ct > 0
−λt + βλt+1 = 0, mt > 0

Substituting,

βu‘(ct+1)

pt+1
=
u‘(ct)
pt

, mt > 0
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Definition 3
A competitive equilibrium is an allocation {cot , cet }

∞
t=0,

nonnegative money holdings {mo
t ,me

t }
∞
t=−1, and a nonnegative

price level sequence {pt}
∞
t=0 such that (a) given the price level

sequence and (mo
−1,me

−1), the allocation solves the optimum
problems of both types of households, and (b)
cot + cet = 1, mo

t−1 +m
e
t−1 =M/N ∀ t > 0.
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Assume the Pareto Optimal solution of constant
consumption through time,

{ct
o}∞t=0 = {c0, 1 − c0, c0, 1 − c0, . . .}

{ct
e}∞t=0 = {1 − c0, c0, 1 − c0, c0, . . .}

Let pt = p. Then for the odd consumer:

βu ′(1 − c0)

p
=
u ′(c0)

p

Rearranging,

β =
u ′(c0)

u ′(1 − c0)
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Because β < 1 it follows that c0 ∈ ( 1
2 , 1)

Notice that c0 is not constant, rather, it fluctuates through
time. This solution is not Pareto Optimal.
To pin-down the price level, consider the odd agents
period 0 budget constraint:

pc0 +M/N = p · 1

Or,

p =
M

N(1 − c0)
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